合作客戶(hù)/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 熱毛細效應引起的表面張力梯度導致傾斜壁面上液膜干斑的出現(三)
> 水面上單分子層膜通過(guò)磷脂光控開(kāi)關(guān)實(shí)現可逆光學(xué)控制——結論、致謝!
> 中心對稱(chēng)分子稀土夾心雙酞菁銩LB膜制備及二次諧波產(chǎn)生機制
> 不同濃度6∶2氟調磺酸的表面張力測定儀器及結果(一)
> 某種物體表面張力系數為零會(huì )發(fā)生什么現象?
> 燒結礦致密化行為研究:不同堿度條件下熔體的表面張力、表觀(guān)黏度值(二)
> 脂肪醇聚醚磺酸鹽的界面性能、耐溫耐鹽性能對比
> 克拉瑪依油田:陰陽(yáng)離子表面活性劑復配體系可實(shí)現超低界面張力
> 雙季銨基鄰苯二甲酸酯基表面活性劑SHZ16和SHZ14表面張力等性能對比(一)
> 干濕循環(huán)試驗:不同表面張力下土壤裂隙的發(fā)展演化機理(一)
推薦新聞Info
-
> 基于水煤漿流變性和動(dòng)態(tài)表面張力觀(guān)察水煤漿的微觀(guān)破裂特性(三)
> 基于水煤漿流變性和動(dòng)態(tài)表面張力觀(guān)察水煤漿的微觀(guān)破裂特性(二)
> 基于水煤漿流變性和動(dòng)態(tài)表面張力觀(guān)察水煤漿的微觀(guān)破裂特性(一)
> 免罩光水性素色面漆配方、制備方法及步驟
> 固體、鹽溶液表面張力測量及與其在潔凈硅橡膠表面接觸角的關(guān)系研究(三)
> 固體、鹽溶液表面張力測量及與其在潔凈硅橡膠表面接觸角的關(guān)系研究(二)
> 固體、鹽溶液表面張力測量及與其在潔凈硅橡膠表面接觸角的關(guān)系研究(一)
> 電場(chǎng)處理水浮力、及與普通水的表面張力系數測定
> 軟物質(zhì)褶皺形成機制新發(fā)現:液體浸潤、表面張力與接觸線(xiàn)釘扎效應
> LB膜技術(shù)在界面相互作用研究中的應用
基于界面張力弛豫法考察羥基取代烷基苯磺酸鹽的界面擴張流變性質(zhì)(三)
來(lái)源: 《天津工業(yè)大學(xué)學(xué)報》 瀏覽 771 次 發(fā)布時(shí)間:2024-12-09
2.1.3濃度對ω0的影響
表面活性劑濃度對表面和界面擴張彈性全頻率譜上ω0的影響如圖4所示。擴張彈性數值達到平臺,意味著(zhù)擾動(dòng)過(guò)程中組成界面膜的分子不與體相間發(fā)生交換,同時(shí),界面上的分子也不能通過(guò)取向變化耗散能量。也就是說(shuō),ω0大于界面及其附近所有弛豫過(guò)程的特征頻率。
由圖4可以看出,對于C8C10和C10C8,無(wú)論是表面還是界面,ω0均隨濃度增大而升高。隨表面活性劑濃度升高,擴散-交換過(guò)程加快;同時(shí),界面吸附分子數目增多,分子取向變化更容易發(fā)生。上述因素均造成體系中各弛豫過(guò)程特征頻率升高,因此,ω0也隨之升高。
圖4表面活性劑濃度對表面和界面擴張彈性曲線(xiàn)上ω0的影響
與ω1的變化規律類(lèi)似,對于表面吸附膜,C10C8的ω0在整個(gè)實(shí)驗濃度范圍內均明顯低于C8C10。這是由于羥基鄰位長(cháng)鏈烷基之間的強相互作用造成的。而對于界面吸附膜,由于癸烷分子插入界面吸附膜中,破壞了分子間相互作用,C8C10和C10C8的ω0差別變小。與ω1不同的是,ω0不僅與擴散-交換過(guò)程有關(guān),也與單分子取向變化等更快的弛豫過(guò)程相關(guān),因此,界面上ω0的變化趨勢與ω1不同。
2.1.4濃度對ε0的影響
表面活性劑濃度對表面和界面吸附膜極限擴張彈性ε0的影響如圖5所示。
由圖5可以看出,對于表面吸附膜,ε0隨濃度升高通過(guò)一個(gè)極大值。在前期通過(guò)周期振蕩法進(jìn)行的擴張流變研究中發(fā)現,隨著(zhù)表面吸附分子數目增多,羥基鄰位的長(cháng)鏈烷基的取向從沿表面伸展逐漸向伸入空氣轉變。這種分子取向的變化削弱了表面吸附膜的結構,造成ε0的降低。C10C8分子間的相互作用更強,發(fā)生轉折的濃度更高,能夠達到的ε0數值更高(178 mN/m)。而對于界面吸附膜,結構被削弱,主要由單分子的行為控制,結構的相似性導致C8C10和C10C8的ε0數值接近。
圖5表面活性劑濃度對表面和界面極限擴張彈性ε0的影響
2.2吸附膜的界面擴張黏性
黏性是表征界面吸附膜特性的另一重要參數,直接與弛豫過(guò)程的特征頻率相關(guān)。對于吸附膜,至少存在擴散-交換的弛豫過(guò)程,必然表現為一定的黏性。黏性對于界面膜的強度也有很大貢獻,具有一定黏性的界面膜有利于泡沫或者乳狀液的穩定。C8C10溶液的表面和界面擴張黏性的全頻率譜如圖6所示。
圖6 C8C10溶液的表面和界面擴張黏性的全頻率譜
由圖6可以看出,在實(shí)驗濃度范圍內,擴張黏性均隨頻率升高通過(guò)一個(gè)極大值,極大值對應的頻率就是該弛豫過(guò)程的特征頻率。由于只通過(guò)一個(gè)極大值,說(shuō)明表面和界面的性質(zhì)由一個(gè)主要弛豫過(guò)程控制。
界面擴張黏性全頻率譜的特征可以用擴張黏性的最大值εi0及其對應頻率ωi來(lái)表征。表面活性劑濃度對表面和界面擴張黏性最大值對應頻率的影響如圖7所示。
圖7表面活性劑濃度對表面和界面擴張黏性最大值對應頻率的影響
由圖7可以看出,對于C8C10和C10C8,無(wú)論是表面還是界面,ωi均隨濃度增大而升高。這是兩方面因素共同影響造成的:①主控的弛豫過(guò)程從慢過(guò)程變?yōu)榭爝^(guò)程;②主控的弛豫過(guò)程的特征頻率變快。
對比圖4和圖7可以看出,ωi隨濃度的變化趨勢與ω0十分相似:對于表面吸附膜,C10C8的ωi在整個(gè)實(shí)驗濃度范圍內均明顯低于C8C10。這是由于羥基鄰位長(cháng)鏈烷基之間存在纏繞,其取向變化產(chǎn)生界面大量分子重排的慢過(guò)程;鄰位烷基鏈越長(cháng),慢過(guò)程的貢獻越大。而對于界面吸附膜,由于癸烷分子插入界面吸附膜中,擴散-交換過(guò)程主導分子的界面行為,C8C10和C10C8具有相似的流體動(dòng)力學(xué)半徑,ωi隨濃度的變化趨勢變得相似。
表面活性劑濃度對表面和界面擴張黏性最大值的影響如圖8所示。
對比圖5和圖8可以看出,εi0隨濃度的變化趨勢與ε0十分相似:對于表面吸附膜,εi0隨濃度升高通過(guò)一個(gè)極大值,反映了羥基鄰位的長(cháng)鏈烷基取向變化造成的表面吸附膜結構的削弱。C10C8的羥基鄰位烷基鏈更長(cháng),界面分子間的相互作用更強,發(fā)生轉折的濃度更高,能夠達到的εi0數值更高(62 mN/m)。而對于界面吸附膜,膜性質(zhì)主要由單分子的行為控制,C8C10和C10C8的結構相似,因此,εi0數值接近。
圖8表面活性劑濃度對表面和界面擴張黏性最大值的影響
3結論
本文利用界面張力弛豫技術(shù),研究了不同鏈長(cháng)羥基取代烷基苯磺酸鹽C10C8和C8C10在表面和正癸烷-水界面的吸附行為,得到以下結論:
(1)由于苯環(huán)上磺酸基和羥基均與水相作用,使得羥基鄰位的長(cháng)鏈烷基傾向于沿界面伸展,表現出較強的分子間相互作用;羥基對位的長(cháng)鏈烷基則傾向于伸入空氣或油相。
(2)對于表面吸附膜,界面分子重排的膜內過(guò)程控制膜性質(zhì)。羥基鄰位烷基鏈越長(cháng),分子間相互作用越強,表面上主控的弛豫過(guò)程的特征頻率越低。C10C8表現出更高的極限擴張彈性和擴張黏性最大值。
(3)對于界面吸附膜,癸烷分子插入界面吸附膜中,破壞了分子間強相互作用,擴散-交換過(guò)程控制膜性質(zhì)。C10C8和C8C10具有相似的流體動(dòng)力學(xué)半徑,表現出相近的極限擴張彈性和擴張黏性最大值。