合作客戶(hù)/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 拉筒法和靜滴法測定連鑄結晶器保護渣表面張力(一)
> 多晶硅蝕刻液的制備方法及表面張力測試結果
> 表面能和表面張力關(guān)系,如何降低表面張力
> 甜菜堿類(lèi)表面活性劑?的礦化度對界面張力影響有多大
> 不同水解時(shí)間的Protamex酶對玉米谷蛋白表面張力、泡沫、理化性質(zhì)等的影響(二)
> 水與瓦斯煤之間的表面張力計算方法及動(dòng)態(tài)潤濕機理研究(三)
> 電子微量天平應用實(shí)例:研究氮修飾木質(zhì)素基超交聯(lián)聚合物碘吸附機理
> 鈦合金Ti6Al4V :SLM成型件冶金缺陷與表面張力有關(guān)嗎
> 微凝膠顆粒在氣液界面處吸附動(dòng)力學(xué)及動(dòng)態(tài)方程研究——摘要、介紹、材料及方法
> 表面張力對生物反應器氣液傳質(zhì)強化的影響
推薦新聞Info
-
> 免罩光水性素色面漆配方、制備方法及步驟
> 固體、鹽溶液表面張力測量及與其在潔凈硅橡膠表面接觸角的關(guān)系研究(三)
> 固體、鹽溶液表面張力測量及與其在潔凈硅橡膠表面接觸角的關(guān)系研究(二)
> 固體、鹽溶液表面張力測量及與其在潔凈硅橡膠表面接觸角的關(guān)系研究(一)
> 電場(chǎng)處理水浮力、及與普通水的表面張力系數測定
> 軟物質(zhì)褶皺形成機制新發(fā)現:液體浸潤、表面張力與接觸線(xiàn)釘扎效應
> LB膜技術(shù)在界面相互作用研究中的應用
> LB膜技術(shù)在生物基材料改性中的應用
> 重軌鋼中氧、硫含量、夾雜物形核率、聚集與界面張力的關(guān)系(四)
> 重軌鋼中氧、硫含量、夾雜物形核率、聚集與界面張力的關(guān)系(三)
新型助排劑配方組分、對表/界面性能的影響及助排效果(二)
來(lái)源:西安石油大學(xué)學(xué)報(自然科學(xué)版) 瀏覽 124 次 發(fā)布時(shí)間:2025-06-27
2結果與討論
2.1助排劑組成
本研究的目的是獲得具有低表/界面張力且與巖石達到近似于中性潤濕的助排劑。首先,需要選擇表面活性劑。表面活性劑溶液達到臨界膠束濃度(cmc)后的表面張力(γcmc)是該表面活性劑溶液能夠獲得的最低表面張力。根據常見(jiàn)表面活性劑的γcmc數據,氟表面活性劑能夠使水溶液達到更低的表面張力。因此,在新型助排劑中將選用合適的氟表面活性劑以降低溶液的表面張力。其次,選擇潤濕性改變劑。要達到與巖石接近中性潤濕,需要調節助排劑在巖石表面的吸附作用,以改變巖石表面的性質(zhì)使助排劑體系與巖石潤濕接觸角在75°~105°間(90°±15°)。此外,由于氟表面活性劑和潤濕性改變劑一般只能使油水界面張力降低到1 mN/m以上,因此要借鑒化學(xué)驅提高采收率中能夠與原油達到超低界面張力的表面活性劑的選擇方法,復配合適的碳氫表面活性劑以獲得能夠同時(shí)降低界面張力的助排劑體系。
圖1為3種氟表面活性劑的表面張力曲線(xiàn)。從圖1可以看出,隨著(zhù)氟表面活性劑濃度的增加,溶液表面張力迅速下降,當濃度達到臨界膠束濃度(cmc)后,隨著(zhù)濃度的增加,表面張力趨于穩定。3種氟表面活性劑FC-XF、FC-100和FC-H水溶液的cmc分別為0.001%、0.003%和0.005%,最低表面張力γcmc分別約為19、19.5和22.5 mN/m。因此,兩性氟表面活性劑FC-XF比2種非離子型氟表面活性劑具有更強的降低表面張力效率(低cmc)和能力(低γcmc),而且兩性型氟表面活性劑也不存在非離子型表面活性劑在更高溫度下氧乙烯基團失去親水性而不溶于水的問(wèn)題。因此選擇FC-XF作為助排劑中的氟表面活性劑。
圖1氟表面活性劑溶液的表面張力
圖2為Ⅱ型潤濕性改變劑質(zhì)量分數與巖石的接觸角之間的關(guān)系。從圖2可以看出,隨著(zhù)Ⅱ型潤濕性改變劑質(zhì)量分數的增加,接觸角由55°逐漸增大,當加入0.2%Ⅱ型潤濕性改變劑時(shí)接觸角可達到83°,繼續增加濃度接觸角略有減小,但都大于75°。
圖2Ⅱ型潤濕性改變劑質(zhì)量分數與巖石接觸角關(guān)系曲線(xiàn)
圖3為典型的碳氫表面活性劑/潤濕性改變劑混合溶液與原油的動(dòng)態(tài)界面張力曲線(xiàn)。從圖3可以看出,0.1%C12CON+0.2%Ⅱ型潤濕性改變劑、0.1%GL6/SDS(混合質(zhì)量比為4∶1)+0.2%Ⅱ型潤濕性改變劑混合溶液與原油的界面張力分別為2.573 2 mN/m和0.063 5 mN/m,但0.1%APS+0.2%Ⅱ型潤濕性改變劑混合溶液與原油的界面張力可以達到0.024 6 mN/m。而且,0.1%APS+0.1%Ⅱ混合溶液與原油的界面張力也低于0.05 mN/m,0.1%APS+0.5%Ⅱ型潤濕性改變劑混合溶液與原油的界面張力甚至可以達到小于0.003 5 mN/m的超低界面張力。
圖3碳氫表面活性劑/潤濕性改變劑混合溶液與原油的動(dòng)態(tài)界面張力曲線(xiàn)
綜合上述研究結果,選擇氟表面活性劑FC-XF、Ⅱ型潤濕性改變劑和兩性表面活性劑APS復配制備高界面活性劑助排劑。
2.2助排劑配方確定
將不同質(zhì)量分數的氟表面活性劑FC-XF、Ⅱ型潤濕性改變劑和兩性表面活性劑APS復配可以獲得不同的助排劑體系。各組分的含量不同,所獲得的助排劑溶液的表/界面張力和對巖石潤濕角不同。為了獲得最優(yōu)配方,實(shí)驗考察了當Ⅱ型潤濕性改變劑質(zhì)量分數為0.2%,分別改變FC-XF和APS的質(zhì)量分數時(shí)對助排劑體系表/界面張力和接觸角的影響。這不僅可以分析助排劑組分對表/界面性能的影響,而且有利于助排劑的配方優(yōu)化。
圖4為Ⅱ型潤濕性改變劑質(zhì)量分數為0.2%,APS質(zhì)量分數為0.1%時(shí)氟表面活性劑FC-XF濃度對體系表面張力、界面張力和接觸角的影響。
圖40.1%APS+0.2%Ⅱ型潤濕性改變劑+FC-XF混合體系表面張力、界面張力和接觸角隨FC-XF質(zhì)量分數的變化
從圖4(a)中可以看出,隨著(zhù)FC-XF質(zhì)量分數由0.005%增加到0.050%,體系的表面張力由25.6 mN/m降低至20.8 mN/m,界面張力則由0.028 6 mN/m升高到0.212 3 mN/m。這是因為助排劑中各組分在表/界面上發(fā)生協(xié)同和競爭吸附,FC-XF濃度增加使得表/界面中FC-XF的吸附量增加,因而降低表面張力的效率增加,同時(shí)使得降低界面張力組分的吸附量減小,因而界面張力升高。
從圖4(b)中可以看出,隨著(zhù)FC-XF質(zhì)量分數由0.005%增加到0.050%,混合體系與巖石的接觸角由87°降低至73°,γcosθ由1.3 mN/m上升到6.3 mN/m。這是由于吸附Ⅱ型潤濕性改變劑和APS使得巖石表面由水濕轉變?yōu)橹行詽櫇?接觸角>87°),更易于吸附FC-XF的碳氟鏈而使親水性頭基在巖石表面暴露,增加了巖石表面的親水性,因而隨著(zhù)FC-XF質(zhì)量分數的增加接觸角減小。