合作客戶(hù)/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 界面張力對凝析油氣相滲及臨界流動(dòng)飽和度的影響、模型構建
> 納米生物質(zhì)體系性能評價(jià)及驅油特性實(shí)驗研究
> 一體化生物復合乳液研制及在碳酸鹽巖體積加砂壓裂中的應用(二)
> 新制備的雙向拉伸聚丙烯消光膜,具有高挺度、表面張力持久等優(yōu)點(diǎn)
> 不同表面張力和接觸角下膨脹土裂隙的發(fā)展演化過(guò)程(一)
> 我國陶瓷墨水生產(chǎn)企業(yè)基本狀況以及國產(chǎn)墨水與進(jìn)口墨水性能的比較
> ?納米乳液NR-A脫附除油機理及效果
> 溫度、截斷半徑、模擬分子數對水汽液界面特性的影響規律(二)
> 超聲協(xié)同殼聚糖處理對蛋黃液界面張力的影響
> 界面張力儀測量方法與標準
推薦新聞Info
-
> Langmuir槽法研究不同電性Gemini表面活性劑對界面吸附膜性質(zhì)的影響(三)
> Langmuir槽法研究不同電性Gemini表面活性劑對界面吸附膜性質(zhì)的影響(二)
> Langmuir槽法研究不同電性Gemini表面活性劑對界面吸附膜性質(zhì)的影響(一)
> 生物表面活性劑產(chǎn)生菌的篩選及對PAHs污染環(huán)境的修復效果研究(四)
> 生物表面活性劑產(chǎn)生菌的篩選及對PAHs污染環(huán)境的修復效果研究(三)
> 生物表面活性劑產(chǎn)生菌的篩選及對PAHs污染環(huán)境的修復效果研究(二)
> 生物表面活性劑產(chǎn)生菌的篩選及對PAHs污染環(huán)境的修復效果研究(一)
> 表面活性劑生物降解度測定方法種類(lèi)及表面張力法的優(yōu)勢——結果與分析、結論
> 表面活性劑生物降解度測定方法種類(lèi)及表面張力法的優(yōu)勢——摘要、實(shí)驗部分
> 炔屬二醇表面活性劑對環(huán)氧灌漿材料漿液性能、灌體的滲透性影響(二)
?平衡/動(dòng)態(tài)表面張力測定:煤基C10~13MADS VS2A1
來(lái)源:印染助劑 瀏覽 1128 次 發(fā)布時(shí)間:2023-10-31
烷基二苯醚雙磺酸鈉(MADS)是二苯醚與烯烴經(jīng)烷基化反應、磺化反應,最后中和得到的產(chǎn)物,其中烯烴源于石化資源,全部依賴(lài)進(jìn)口。目前我國煤制油費托合成產(chǎn)物中含有50%以上的烯烴,可替代進(jìn)口石油基烯烴用以制備MADS。本實(shí)驗采用費托合成產(chǎn)物C10~13餾分段為烷基化試劑,制備煤基C10~13MADS,測定平衡表面張力、動(dòng)態(tài)表面張力,并與石油基支鏈十二烷基二苯醚雙磺酸鈉(2A1)進(jìn)行對比。
操作方法
平衡表面張力
采用表面張力儀進(jìn)行測量。用去離子水配制C10~13MADS和2A1溶液,靜置24 h,在(25.0±1.0)℃下采用吊片法進(jìn)行測量。測量前采用超純水對儀器進(jìn)行校準。
動(dòng)態(tài)表面張力
使用動(dòng)態(tài)表面張力儀用泡壓法進(jìn)行測定。C10~13MADS和2A1樣品溶液質(zhì)量濃度為1.0 g/L,測量前靜置24 h;測試溫度為(25.0±1.0)℃,有效時(shí)間為0.01~250.00 s。
結果
平衡表面張力
表面活性劑降低溶液表面張力的2個(gè)主要特性是降低溶液表面張力的能力與降低溶液表面張力的效率。γcmc是表面活性劑溶液在臨界膠束濃度(cmc)處的表面張力,用于表征該樣品降低表面張力能力的強弱。pC20為使溶液表面張力降低20 mN/m時(shí)所需質(zhì)量濃度的負對數,用于表征降低溶液表面張力的效率。圖1為C10~13MADS及2A1的表面張力曲線(xiàn),從中獲得的表面性能參數列于表1。
圖1煤基C10~13MADS及2A1的表面張力曲線(xiàn)
表1煤基C10~13MADS及2A1的表面性能參數
由表1可以看出,2A1的cmc低于C10~13MADS,即形成膠束的能力更強,這是由于2A1的親水性低于C10~13MADS,疏水作用強,有利于形成膠束。2A1的pC20值大于煤基C10~13MADS,說(shuō)明2A1在去離子水溶液中降低溶液表面張力的效率高于C10~13MADS。對于碳氫鏈型表面活性劑,氣/液界面處的—CH3密度對其表面活性起著(zhù)很重要的作用,—CH3密度的增大有利于溶液表面張力的降低,同時(shí)γcmc值也逐步降低。由表1可以看出,煤基C10~13MADS的γcmc大于2A1,這是由于2A1是采用四聚丙烯得到的支鏈十二烯為原料制備的,其疏水鏈的—CH3密度大于煤基C10~13MADS。
動(dòng)態(tài)表面張力
在實(shí)際應用中,時(shí)間快慢起著(zhù)關(guān)鍵性作用。比如,在泡沫的生成過(guò)程中,表面張力的降低會(huì )使液膜更容易形成,同時(shí)也會(huì )使液膜不容易收縮和破壞,得到的泡沫就比較穩定。如果溶液的表面張力下降緩慢,相比之下,液膜擴展和破裂的速度快,表面活性劑不能發(fā)揮本身的作用。因此,對于非平衡情況下溶液表面性質(zhì)的研究很有意義。
由圖2可以看出,在1 s內,煤基C10~13MADS和2A1的表面張力下降速度和幅度沒(méi)有明顯差異,在1~10 s內,2A1的表面張力下降速度和幅度變大,煤基C10~13MADS在10 s后才開(kāi)始下降,并在結束時(shí)都未達到平衡。這可能是由于2A1的cmc低,游離的表面活性劑分子多,而且其有效碳鏈長(cháng)度比較短,在氣/液界面吸附比較快,從而使得表面張力下降速度快。
圖2表面張力與時(shí)間關(guān)系曲線(xiàn)
結論:
煤基C10~13MADS的表面活性、降低表面張力的速度都比2A1差。