合作客戶(hù)/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 不同種類(lèi)與濃度的無(wú)機鹽氯化物對麥胚脂肪酶油-水界面特性的影響(一)
> 高壓CO2對表面活性劑水溶液與原油界面張力、原油乳化的影響——結果與討論、結論
> 無(wú)機粒子對TPAE界面張力、發(fā)泡、抗收縮行為的影響(三)
> 涂料配方設計如何選擇潤濕劑?表面張力成為重要決定因素之一
> ?涂料施工后出現縮孔等缺陷,居然與表面張力有關(guān)
> 氣體富集、雜質(zhì)對固-液界面納米氣泡接觸角的影響——引言、實(shí)驗儀器與試劑
> 新型聚芴材料螺芴氧雜蒽的X型多層LB膜制備方法
> 什么是納米氣泡?納米氣泡特征及制備方法
> 液體表界面張力測試的注意事項
> 液態(tài)合金表面張力快速檢測及相關(guān)質(zhì)量參數實(shí)時(shí)評價(jià)
推薦新聞Info
-
> 基于藥液表面張力測定估算蘋(píng)果樹(shù)最大施藥液量的方法(四)
> 基于藥液表面張力測定估算蘋(píng)果樹(shù)最大施藥液量的方法(三)
> 基于藥液表面張力測定估算蘋(píng)果樹(shù)最大施藥液量的方法(二)
> 基于藥液表面張力測定估算蘋(píng)果樹(shù)最大施藥液量的方法(一)
> 礦用塵克(C&C)系列除塵劑對大采高工作面截割煤塵的降塵效率影響(三)
> 礦用塵克(C&C)系列除塵劑對大采高工作面截割煤塵的降塵效率影響(二)
> 礦用塵克(C&C)系列除塵劑對大采高工作面截割煤塵的降塵效率影響(一)
> 液滴爆炸現象:酒精蒸發(fā)引起的馬蘭戈尼流動(dòng)現象影響參數(三)
> 液滴爆炸現象:酒精蒸發(fā)引起的馬蘭戈尼流動(dòng)現象影響參數(二)
> 液滴爆炸現象:酒精蒸發(fā)引起的馬蘭戈尼流動(dòng)現象影響參數(一)
考慮界面張力、液滴尺寸和液滴變形影響的攜液臨界模型構建(一)
來(lái)源:石油鉆采工藝 瀏覽 569 次 發(fā)布時(shí)間:2024-12-17
現有的攜液臨界流量模型通常認為界面張力及曳力系數為常數,忽略溫度及壓力對界面張力、液滴尺寸及液滴變形對曳力系數的影響,造成預測攜液臨界流量的結果與實(shí)際結果有較大差異。為了更準確預測氣井攜液臨界流量,首先通過(guò)分段擬合界面張力實(shí)驗數據,建立界面張力公式,然后引入變形液滴曳力系數公式及液滴變形程度和液滴尺寸之間的關(guān)系式,得到考慮界面張力和液滴變形影響的攜液臨界流量模型。研究結果表明,溫度越高,壓力越大,界面張力越小,攜液臨界流量越??;液滴尺寸越大,液滴變形越嚴重,液滴高寬比越小,曳力系數越大,攜液臨界流量越小。實(shí)驗表明,模型預測數據與氣井微觀(guān)液滴積液實(shí)驗數據基本吻合一致,其準確度遠遠高于Turner模型和李閩模型。新模型能夠更加準確預測不同液滴尺寸下的攜液臨界流量,符合氣田開(kāi)發(fā)規律,為油氣田開(kāi)發(fā)提供技術(shù)指導。
氣井攜液臨界流量的準確計算對于采氣和開(kāi)發(fā)工程方案的編制有重要意義。1969年Turner分析了垂直管流中液相的流動(dòng)方式,認為液滴模型可以較準確預測積液的形成,其模型中液滴呈球形,曳力系數取0.44,界面張力為60 mN/m,模型適用條件為氣液比大于1 367 m3/m3,流態(tài)屬于霧狀流。之后許多學(xué)者分別在模型調整系數、液相流動(dòng)方式、液滴形狀等方面作了改進(jìn),但是仍然有些因素沒(méi)有被考慮到。例如,氣水界面張力通常被認為是常數60 mN/m,而實(shí)驗表明其數值隨壓力與溫度的變化而變化;液滴變形高寬比固定,導致對應曳力系數為常數,而實(shí)驗表明其受到氣體速度和壓力的影響。在前學(xué)者研究的基礎上,考慮界面張力、液滴尺寸和變形影響,建立新的攜液臨界流量模型,以更加準確地預測氣井攜液臨界流量。
1、界面張力模型
Firoozabadi于1988年首次根據實(shí)驗測量的甲烷(CH4)、丙烷(C3H8)、正丁烷(n-C4)、正戊烷(n-C5)、正己烷(n-C6)、苯(C6H6)、正辛烷(n-C8)和正十二烷(n-C12)的數據,認為烴與水之間的界面張力、擬對比溫度和烴水密度差滿(mǎn)足一定關(guān)系,以烴水密度差Δρwh為橫坐標,函數(σhw0.25/Δρwh)Tr0.3125為縱坐標,可以得到不同組分的烴/水界面張力函數曲線(xiàn),如圖1所示。Danesh于1988年利用Firoozabadi提供的實(shí)驗數據,回歸出了界面張力經(jīng)驗公式為
圖1不同組分的烴/水界面張力函數
式中,Δρwh為烴水密度差,g/cm3;σhw為烴水、氣水或者油水界面張力,mN/m;ρw為水的密度,g/cm3;ρh為烴的密度或者氣和油的密度,g/cm3;Tr為擬對比溫度。
Sutton于2007年在新實(shí)驗數據的支持下,對Danesh模型進(jìn)行改進(jìn),得到新的模型為
Sutton通過(guò)數據分析改進(jìn)舊模型,假設臨界溫度為常數,建立了新的界面張力模型為
式中,T為熱力學(xué)溫度,°R。上述3個(gè)模型的密度差范圍為0~1 g/cm3,包含油相和氣相2個(gè)區域,模型對油水和氣水界面張力的預測均通用,但是由于同時(shí)擬合了油水和氣水界面張力實(shí)驗數據,模型整體擬合的精度降低,為了獲得更精確的氣水界面張力,通過(guò)分段擬合,即只擬合密度差大于0.4 g/cm3的氣相階段,得到更加準確的氣水界面張力經(jīng)驗公式為
式中,σgw為氣水界面張力,mN/m;ρg為氣相密度,g/cm3。比較新模型式(4)與Danesh模型、Sutton模型在密度差大于0.4 g/cm3時(shí)的誤差,如圖2所示。Danesh模型平均絕對誤差為7.7%;Sutton模型平均絕對誤差為12.1%,而新模型平均絕對誤差為2.8%,計算精度更高。
圖2絕對誤差直方圖
如圖3所示為利用新模型繪制的不同溫度和壓力下的界面張力曲線(xiàn)。從圖中可知,壓力越大,溫度越高,氣水界面張力越??;氣體相對密度越大,氣水界面張力越小。當壓力和溫度分別為0~40 MPa和20~200℃時(shí),界面張力范圍為30~75 mN/m,不能看成常數。
圖3界面張力曲線(xiàn)
2、液滴變形特征
液滴在氣相中運動(dòng)時(shí),氣體作用于液滴上的曳力為
式中,Fd為氣體對液滴的曳力,mN/m;Cd為曳力系數,與液滴大小、液滴形狀及雷諾數有關(guān);Ad為液滴迎風(fēng)面積,即液滴在流動(dòng)方向上的投影,m;vg為氣相速度,m/s。實(shí)驗觀(guān)察液滴下降過(guò)程中通常大液滴首先呈球形、橢球形或者半漢堡形狀,下降過(guò)程中逐漸破碎變小,變?yōu)榍蛐?。魏納于2007年在高速照相機下捕捉高速空氣中液滴的形狀,表明液滴在高速氣流中的形狀是橢球形,且液滴并不保持一個(gè)固定形狀,而是在上升過(guò)程中不斷變化,液滴越往上越趨近保持球形。