合作客戶(hù)/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 裂縫性水封氣藏解封過(guò)程中潤濕反轉劑濃度、氣水界面張力變化(三)
> 酚胺樹(shù)脂聚醚型破乳劑分子結構、濃度對油-水界面張力的影響——結果與討論、結論
> ?什么是表面張力?表面張力儀的結構組成、測試過(guò)程、校準方法、分類(lèi)及應用
> NaOL、HZ組合捕收劑對鋰輝石礦物浮選效果、表面張力影響(三)
> 混合型生物洗油菌發(fā)酵上清液的表面張力值測定(一)
> 以大豆為原料合成的N-椰子油?;鶑秃习被岜砻婊钚詣┍砻鎻埩?、乳化起泡潤濕性能測定(二)
> 表面張力與涂料質(zhì)量關(guān)系
> 改性環(huán)氧樹(shù)脂乳液型碳纖維上漿劑制備、表面張力、黏度等性能測試(三)
> 不同水油黏度比條件下乳化對3種稠油復合體系的影響(一)
> 微膠囊聚合物溶液對延展型表面活性劑界面張力的影響(一)
推薦新聞Info
-
> 生物表面活性劑產(chǎn)生菌的篩選及對PAHs污染環(huán)境的修復效果研究(四)
> 生物表面活性劑產(chǎn)生菌的篩選及對PAHs污染環(huán)境的修復效果研究(三)
> 生物表面活性劑產(chǎn)生菌的篩選及對PAHs污染環(huán)境的修復效果研究(二)
> 生物表面活性劑產(chǎn)生菌的篩選及對PAHs污染環(huán)境的修復效果研究(一)
> 表面活性劑生物降解度測定方法種類(lèi)及表面張力法的優(yōu)勢——結果與分析、結論
> 表面活性劑生物降解度測定方法種類(lèi)及表面張力法的優(yōu)勢——摘要、實(shí)驗部分
> 炔屬二醇表面活性劑對環(huán)氧灌漿材料漿液性能、灌體的滲透性影響(二)
> 炔屬二醇表面活性劑對環(huán)氧灌漿材料漿液性能、灌體的滲透性影響(一)
> 羧酸鹽型Gemini表面活性劑GAC-31合成條件及表、界面活性研究(二)
> 羧酸鹽型Gemini表面活性劑GAC-31合成條件及表、界面活性研究(一)
系列脂肪醇聚氧乙烯醚磺酸鹽表面活性劑制備、溶解性、表面張力及界面張力測定(二)
來(lái)源:石油化工 瀏覽 58 次 發(fā)布時(shí)間:2025-07-25
2.3地層水對表面張力的影響
使用模擬臨盤(pán)油田地層水將表面活性劑配制成溶液,考察油田地層水對表面活性劑表面活性的影響,實(shí)驗結果見(jiàn)圖1。由圖1可看出,在該油田地層水中,C14EO3S,C16EO3S,C18EO3S的cmc依次為80,40,10 mg/L,其所對應的γcmc分別為28.86,32.38,33.75 mN/m。與C14EO3S在蒸餾水中的cmc相比,C14EO3S在油田地層水的cmc降低了20 mg/L。由文獻[1]的報道可知,在該油田地層水中,C14EO6S,C16EO6S,C18EO6S表面活性劑的cmc依次為100,50,50 mg/L,其所對應的γcmc分別為29.14,36.74,34.65 mN/m。實(shí)驗結果表明,隨EO數的增加,脂肪醇聚氧乙烯醚磺酸鹽表面活性劑在油田地層水中的cmc和其所對應的γcmc均有不同程度的增大。
圖1模擬臨盤(pán)油田地層水的濃度對表面活性劑表面活性的影響
2.4 CaCl2溶液對表面張力的影響
C16EO3S表面活性劑的抗鹽性能見(jiàn)圖2。
圖2 C16EO3S表面活性劑的抗鹽性能
由圖2可見(jiàn),隨溶液中CaCl2含量的增大,C16EO3S表面活性劑的cmc和其所對應的γcmc均呈下降趨勢;C16EO3S表面活性劑在質(zhì)量濃度為500,1 000,5 000 mg/L的CaCl2溶液中的cmc分別為40,30,25 mg/L,其所對應的γcmc分別為32.76,31.13,30.42 mN/m,γcmc的降幅較小。實(shí)驗結果表明,C16EO3S表面活性劑在CaCl2溶液中也具有良好的活性,抗鹽能力較強。這是因為,C16EO3S分子結構中的—SO3-基團有一定的抗二價(jià)陽(yáng)離子的能力,且分子中的EO鏈節與水分子間有較強的氫鍵作用,增加了C16EO3S的水溶性,可抗衡膠束的聚集,提高抗硬水的能力。
2.5界面活性
測定表面活性劑溶液與一系列正構烷烴間的界面張力,若它與其中一種正構烷烴的界面張力最低,則此正構烷烴的碳原子數即為該表面活性劑的最小烷烴碳數(nmin)。當某正構烷烴和表面活性劑溶液形成的界面張力與原油和表面活性劑溶液形成的界面張力近似時(shí),則可將該正構烷烴視作與原油等效,原油的等效烷烴碳原子數值應等于該正構烷烴的碳原子數值,稱(chēng)之為該原油的EACN。
用模擬臨盤(pán)油田地層水將脂肪醇聚氧乙烯醚磺酸鹽配制成質(zhì)量濃度為3 000 mg/L的溶液,在70℃下測得C14EO3S,C16EO3S,C18EO3S表面活性劑與原油間的界面張力分別為0.076,0.041,0.034 mN/m。表面活性劑溶液與正構烷烴的界面張力見(jiàn)圖3。
圖3表面活性劑溶液與正構烷烴的界面張力
從圖3可看出,隨正構烷烴碳原子數的增大,表面活性劑溶液與正構烷烴的界面張力呈先減小后增大的趨勢。當正構烷烴的碳原子數為14~18時(shí),C14EO3S,C16EO3S,C18EO3S與正構烷烴的界面張力在10-2mN/m數量級,nmin分別為14,14,16。因此,脂肪醇聚氧乙烯醚(3)磺酸鹽表面活性劑與原油的界面張力和它與十四烷的界面張力非常接近,即臨盤(pán)原油的EACN為14。
脂肪醇聚氧乙烯醚(6)磺酸鹽表面活性劑與正構烷烴間的界面張力在0.1 mN/m以上,界面活性明顯低于脂肪醇聚氧乙烯醚(3)磺酸鹽。這是因為,隨EO數的增加,脂肪醇聚氧乙烯醚磺酸鹽分子的親水性顯著(zhù)增強,表面活性劑分子進(jìn)入水相的趨勢逐漸增強,油水相的分布能力不均衡,減弱了表面活性劑分子在油水界面的富集。
3結論
1)C14EO3S,C16EO3S,C18EO3S表面活性劑的Krafft點(diǎn)分別為5,28,49℃。脂肪醇聚氧乙烯醚(3)磺酸鹽表面活性劑中的脂肪醇碳原子數越少(碳原子數小于16),在鹽溶液中的溶解性越好。
2)C14EO3S,C16EO3S,C18EO3S在蒸餾水中的cmc值分別為100,50,10 mg/L,其所對應的γcmc分別為29.12,33.86,34.59 mN/m;在模擬臨盤(pán)油田地層水中的cmc值依次為80,40,10 mg/L,其所對應的γcmc分別為28.86,32.38,33.75 mN/m。當疏水基鏈長(cháng)相同時(shí),隨EO數的增加,脂肪醇聚氧乙烯醚磺酸鹽表面活性劑的cmc和其所對應的γcmc均呈增大趨勢。
3)C16EO3S表面活性劑在CaCl2溶液中具有良好的活性,抗鹽能力較強。
4)臨盤(pán)原油的EACN為14。脂肪醇聚氧乙烯醚(6)磺酸鹽表面活性劑的界面活性明顯低于脂肪醇聚氧乙烯醚(3)磺酸鹽的活性。
參考文獻[1]鄭延成,張曉梅,薛成,等.脂肪醇聚氧乙烯醚(EO6)磺酸鹽的合成及性能研究[J].日用化學(xué)工業(yè),2013,43(1):21-25.