合作客戶(hù)/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 測量液體表面張力懸滴法介紹
> 質(zhì)量分數對納米流體表面張力、霧化模式的影響
> 3種典型清水劑對不同原油組分界面穩定性、油滴聚并行為的影響(二)
> 氟硅表面活性劑(FSS)水溶液表面張力、發(fā)泡力、乳化力測定(二)
> 通過(guò)3個(gè)小實(shí)驗來(lái)理解水的表面張力
> 如何測量純凈水和硅油、純凈水和乙酸乙酯間的界面張力
> 氣液液微分散體系的微流控制備方法及在稀土離子萃取領(lǐng)域的應用(上)
> 納米乳液的類(lèi)型、制備、粒徑分布、界/表面張力、接觸角和Zeta電位
> 座滴法測量玻璃熔體表面張力裝置、步驟
> 基于表面張力方法判斷物質(zhì)(或材料)的親水性(二)
推薦新聞Info
-
> 納米熔鹽形成機理、表面張力測定及影響因素研究(三)
> 納米熔鹽形成機理、表面張力測定及影響因素研究(二)
> 納米熔鹽形成機理、表面張力測定及影響因素研究(一)
> ?《Nature》論文致謝欄??停撼⒘刻炱降纳锬ぱ芯款嵏残詰?/a>
> Na2CO3溶液與模擬油反應不同時(shí)間后產(chǎn)物的界面張力、剪切黏度(二)
> Na2CO3溶液與模擬油反應不同時(shí)間后產(chǎn)物的界面張力、剪切黏度(一)
> 耐擦刮無(wú)膠消光膜制備方法、高表面張力與收解卷順暢性的平衡(二)
> 耐擦刮無(wú)膠消光膜制備方法、高表面張力與收解卷順暢性的平衡(一)
> 利用超微量天平制備微孔淀粉處理含Cu(II)離子染料廢水
> 不同類(lèi)型的堿、pH值對孤東油田原油界面張力的影響(下)
Na2CO3溶液與模擬油反應不同時(shí)間后產(chǎn)物的界面張力、剪切黏度(一)
來(lái)源:東北石油大學(xué)學(xué)報 瀏覽 47 次 發(fā)布時(shí)間:2025-09-08
采出液的穩定性及處理效果與油水界面性質(zhì)有關(guān),三元復合驅弱堿與原油作用時(shí)間對油水界面性質(zhì)及采出液穩定性有重要影響。以大慶原油模擬油、模擬水和Na2CO3溶液為研究對象,利用界面張力儀、表面黏彈性?xún)x、Zeta電位分析儀及濁度儀,研究大慶油田三元復合驅弱堿與原油長(cháng)期作用后對油水界面性質(zhì)及乳狀液穩定性的影響。結果表明:Na2CO3溶液與模擬油長(cháng)時(shí)間反應后,分離得到的水相與模擬油間的界面張力降低,油珠表面的Zeta電位絕對值增加,油水界面剪切黏度變化不明顯,水相與模擬油乳化后所形成的乳狀液的穩定性增強。Na2CO3溶液與模擬油反應1d后,分離得到的油相與模擬水間的界面張力、Zeta電位及乳狀液穩定性大于未反應的模擬油的;Na2CO3溶液與模擬油反應10d后,分離得到的油相與模擬水間的界面張力小于反應1d后分離所得的油相的,Zeta電位及乳狀液穩定性大于反應1d后分離所得的油相的。該研究結果為三元復合驅機理研究提供參考。
三元復合驅主要是將單一聚合物驅、表面活性劑驅和堿驅有機結合起來(lái),充分發(fā)揮各自的驅替和相互協(xié)同作用,既提高波及系數,又增加洗油效率,從而最大幅度地提高原油采收率。礦場(chǎng)試驗結果表明,強堿三元復合驅可以在水驅基礎上提高原油采收率20%以上。三元復合驅技術(shù)在提高采收率的同時(shí),由于存在強堿,礦場(chǎng)試驗中也出現乳化導致的采出液處理難度大和強堿帶來(lái)的腐蝕結垢及地層傷害等問(wèn)題。李孟濤、楊振宇等認為實(shí)現三元復合驅的弱堿化,可在避免這些問(wèn)題的同時(shí)發(fā)揮三元復合驅及堿驅的積極作用。人們對弱堿和無(wú)堿驅油體系進(jìn)行相關(guān)研究,王德民研究無(wú)需加入堿和助劑可使油水界面張力降至超低的表面活性劑驅油體系,其中以甜菜堿型表面活性劑的性能最好。吳文祥等研究無(wú)堿和加入少量磷酸鈉的新型羧基甜菜堿體系的油水界面活性和驅油效率,該體系提高采收率的能力好于強堿三元驅油體系的。葛際江等認為有機堿與表面活性劑復配后可使油水界面張力降至超低。趙修太采用有機堿乙二胺作為堿劑,發(fā)現有機堿可發(fā)揮與無(wú)機堿相似的作用,與十二烷基苯磺酸鈉起協(xié)同效應。在原油中的有機酸(如脂肪酸和環(huán)烷酸等)可以與堿反應,在油水界面上原位生成界面活性物質(zhì)(如機酸皂等),導致酸性油—堿水體系界面間出現超低界面張力。
筆者通過(guò)實(shí)驗分析弱堿Na2CO3溶液與大慶原油長(cháng)時(shí)間作用后所生成的界面活性物質(zhì),對油水界面性質(zhì)及乳狀液穩定性的影響規律,為三元復合驅機理研究提供參考。
1實(shí)驗
1.1樣品及試劑
實(shí)驗用油樣為大慶原油與煤油按體積比9∶1混合而成(簡(jiǎn)稱(chēng)模擬油)。其中,大慶原油酸值為0.05 mg KOH/g;煤油由北京燕山石油化工有限公司提供,實(shí)驗前用活化后的硅膠反復吸附處理,處理后與二次蒸餾水界面張力大于48mN·m—1.實(shí)驗用Na2CO3弱堿溶液(簡(jiǎn)稱(chēng)Na2CO3溶液)由Na2CO3與蒸餾水配置,質(zhì)量分數為0.53%.實(shí)驗用水樣為大慶油田地層模擬水(簡(jiǎn)稱(chēng)模擬水),離子組成見(jiàn)表1.實(shí)驗所用試劑NaCl、Na2CO3、NaHCO3、CaCl2、MgSO4均為分析純。
表1大慶油田地層模擬水離子組成
1.2實(shí)驗步驟
1.2.1測定界面張力
使用德國Dataphysics公司制造的DCAT—21型表面張力和接觸角儀,采用掛片法測定模擬油與Na2CO3溶液間的界面張力,測定溫度為30℃。
1.2.2測定界面剪切黏度
使用日本協(xié)和株式會(huì )社生產(chǎn)的SVR·S型表面黏彈性?xún)x,采用雙錐擺法測定模擬油與Na2CO3溶液間的界面剪切黏度,測定溫度為30℃。
1.2.3測定乳狀液油滴表面Zeta電位
將模擬油與模擬水按油水體積比1∶4混合,利用高速乳化器在6×103r/min條件下乳化5min,形成O/W型乳狀液(簡(jiǎn)稱(chēng)乳狀液));采用英國馬爾文儀器有限公司的Zetasizer Nano—ZS型納米粒度及Zeta電位分析儀測定乳狀液油滴表面的Zeta電位,測定溫度為30℃。
1.2.4測定乳狀液穩定性
將模擬油與模擬水按油水體積比1∶4混合,采用高速乳化器在6×103r/min條件下乳化5min形成乳狀液;采用德國WTW公司的Turb550濁度儀測定乳狀液的濁度隨測定時(shí)間變化關(guān)系,通過(guò)濁度判斷乳狀液的穩定性,測定溫度為25℃。
2實(shí)驗結果與討論
2.1油水界面張力
在Na2CO3溶液與模擬油反應1d和10d后,分離得到的水相及油相分別與模擬油及模擬水間的界面張力隨測定時(shí)間關(guān)系見(jiàn)圖1.由圖1(a)可以看出,Na2CO3溶液和模擬油反應1d及10d后分離出的水相與模擬油的界面張力,比未反應Na2CO3溶液與模擬油的界面張力低,且隨著(zhù)反應時(shí)間增加,水相與模擬油的界面張力降低。這說(shuō)明模擬油中酸性物質(zhì)與Na2CO3溶液反應生成的部分界面活性物質(zhì)具有較好的水溶性。水溶性的界面活性物質(zhì)在油水界面處吸附,使分離出的水相與模擬油界面張力降低;隨著(zhù)反應時(shí)間的增加,所生成的界面活性物質(zhì)增多,分離出的水相與模擬油的界面張力降低幅度增大。
由圖1(b)可以看出,Na2CO3溶液與模擬油反應1d和10d后分離出的油相與模擬水間界面張力低于模擬油與模擬水間的界面張力。這是由于Na2CO3溶液與模擬油反應生成油溶性的界面活性物質(zhì)且留在油相中,隨著(zhù)反應時(shí)間的增加,反應生成的界面活性物質(zhì)增多,使界面張力較模擬油與模擬水的界面張力降低。這說(shuō)明模擬油中存在相對分子質(zhì)量較大且反應活性低的界面活性物質(zhì),長(cháng)時(shí)間與Na2CO3溶液反應后生成油溶性較強的界面活性物質(zhì)且溶于油相中,使油水界面張力下降較多。
圖1 Na2CO3溶液與模擬油反應不同時(shí)間后產(chǎn)物的界面張力