合作客戶(hù)/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 測量液體表面張力懸滴法介紹
> 質(zhì)量分數對納米流體表面張力、霧化模式的影響
> 3種典型清水劑對不同原油組分界面穩定性、油滴聚并行為的影響(二)
> 氟硅表面活性劑(FSS)水溶液表面張力、發(fā)泡力、乳化力測定(二)
> 通過(guò)3個(gè)小實(shí)驗來(lái)理解水的表面張力
> 如何測量純凈水和硅油、純凈水和乙酸乙酯間的界面張力
> 氣液液微分散體系的微流控制備方法及在稀土離子萃取領(lǐng)域的應用(上)
> 納米乳液的類(lèi)型、制備、粒徑分布、界/表面張力、接觸角和Zeta電位
> 座滴法測量玻璃熔體表面張力裝置、步驟
> 基于表面張力方法判斷物質(zhì)(或材料)的親水性(二)
推薦新聞Info
-
> 納米熔鹽形成機理、表面張力測定及影響因素研究(三)
> 納米熔鹽形成機理、表面張力測定及影響因素研究(二)
> 納米熔鹽形成機理、表面張力測定及影響因素研究(一)
> ?《Nature》論文致謝欄??停撼⒘刻炱降纳锬ぱ芯款嵏残詰?/a>
> Na2CO3溶液與模擬油反應不同時(shí)間后產(chǎn)物的界面張力、剪切黏度(二)
> Na2CO3溶液與模擬油反應不同時(shí)間后產(chǎn)物的界面張力、剪切黏度(一)
> 耐擦刮無(wú)膠消光膜制備方法、高表面張力與收解卷順暢性的平衡(二)
> 耐擦刮無(wú)膠消光膜制備方法、高表面張力與收解卷順暢性的平衡(一)
> 利用超微量天平制備微孔淀粉處理含Cu(II)離子染料廢水
> 不同類(lèi)型的堿、pH值對孤東油田原油界面張力的影響(下)
Na2CO3溶液與模擬油反應不同時(shí)間后產(chǎn)物的界面張力、剪切黏度(二)
來(lái)源:東北石油大學(xué)學(xué)報 瀏覽 41 次 發(fā)布時(shí)間:2025-09-08
2.2油水界面剪切黏度
在Na2CO3溶液與模擬油反應1d和10d后,分離得到的水相與模擬油及油相與模擬水的界面剪切黏度隨剪切速率變化關(guān)系見(jiàn)圖2.由圖2可以看出,Na2CO3溶液與模擬油反應1d及10d后,分離得到的水相與模擬油的界面剪切黏度,與未反應Na2CO3溶液與模擬油的界面剪切黏度相比變化不大;模擬油與Na2CO3溶液反應1d及10d后,分離得到的油相與模擬水的界面剪切黏度與模擬油與模擬水間的界面剪切黏度相比變化不大,表明Na2CO3溶液與模擬油反應后分離出的水相和油相對油水界面剪切黏度影響不大。原因是模擬油中的有機酸組分與Na2CO3溶液反應所生成的,無(wú)論是水溶性還是油溶性的界面活性物質(zhì)均較少,在油水界面處的吸附不足以引起油水界面剪切黏度的變化。
圖2 Na2CO3溶液與模擬油反應不同時(shí)間后產(chǎn)物的界面剪切黏度
2.3油滴表面Zeta電位
Zeta電位是膠體體系的重要參數,其數值(絕對值)越大,乳狀液越穩定;反之,乳狀液越不穩定。將Na2CO3溶液與模擬油反應不同時(shí)間分離出的油相及水相,分別與模擬水、模擬油所形成的乳狀液的油珠表面Zeta電位見(jiàn)表2和表3.
表2反應后水相與模擬油形成乳狀液的油珠Zeta電位
表3反應后油相與模擬水形成乳狀液的油珠Zeta電位
由表2可以看出,Na2CO3溶液與模擬油反應后的水相與模擬油形成乳狀液,與Na2CO3溶液和模擬油直接乳化形成的乳狀液相比,油珠Zeta電位絕對值明顯增大;反應10d的與1d的相比,變化很小。這是由于Na2CO3溶液與模擬油反應后生成一些界面活性物質(zhì)溶于水相中,電離后帶負電荷,與模擬油乳化時(shí),帶負電荷的界面活性物質(zhì)吸附在油珠表面上,使油珠表面帶更多負電荷,從而使油珠Zeta電位絕對值增大。隨著(zhù)反應時(shí)間的延長(cháng),生成的界面活性物質(zhì)逐漸增多,油珠Zeta電位絕對值也繼續增大,但增大的幅度很小。
由表3可以看出,模擬油與模擬水直接乳化后油珠Zeta電位絕對值很大;與Na2CO3溶液反應1d后分離出的油相與模擬水的油珠Zeta電位絕對值很??;反應10d后分離出的油相與模擬水所形成的乳狀液的油珠Zeta電位絕對值增大。這是由于模擬油與模擬水直接乳化時(shí),模擬油與模擬水中的少量弱堿性物質(zhì)(Na2CO3、NaHCO3)反應生成界面活性物質(zhì),在水中電離時(shí)帶負電荷吸附到油珠表面,使油珠表面帶負電荷,Zeta電位絕對值較大。模擬油與Na2CO3溶液反應1d后,模擬油與Na2CO3溶液能夠發(fā)生反應的物質(zhì)多是一些小分子的活性較大物質(zhì),反應后溶解在水相中,使得油相中的界面活性物質(zhì)減少,致使油珠Zeta電位有所降低,結合界面張力的實(shí)驗結果,認為模擬油與Na2CO3溶液短時(shí)間反應生成的活性物質(zhì)較多是水溶性的。隨著(zhù)反應時(shí)間的延長(cháng),反應10d后分離出的油相形成乳狀液的油珠Zeta電位絕對值比反應1d的大,說(shuō)明Na2CO3溶液與原油長(cháng)時(shí)間反應后,一些長(cháng)鏈的油溶性的界面活性物質(zhì)在油水分離后留在油相中,導致形成乳狀液的油珠Zeta電位增大。
2.4乳狀液穩定性
將模擬油與Na2CO3溶液反應1d和10d后分離出的油相及水相,分別與模擬水、未反應的模擬油乳化所形成的乳狀液的濁度與測定時(shí)間的關(guān)系見(jiàn)圖3.由圖3(a)可以看出,Na2CO3溶液與模擬油反應后的水相與模擬油乳化時(shí)所形成的乳狀液,比未反應Na2CO3溶液與模擬油乳化所形成的乳狀液的濁度大,且用稀釋法鑒別均為O/W型乳狀液。隨模擬油與Na2CO3溶液反應時(shí)間增加,反應得到的水相與原油模擬油形成的乳狀液的濁度亦增大。這表明Na2CO3溶液與模擬油反應后的水相與模擬油乳化時(shí)所形成的乳狀液,比未反應Na2CO3溶液與模擬油乳化所形成的乳狀液要穩定,并且模擬油與Na2CO3溶液長(cháng)時(shí)間反應后的水相與模擬油形成的乳狀液更穩定。原因是原油中的一些組分與弱堿發(fā)生反應生成水溶性的界面活性物質(zhì),且隨反應時(shí)間的增加,反應活性較差的小分子的物質(zhì)(如酯類(lèi)等)與弱堿長(cháng)時(shí)間反應也生成界面活性物質(zhì);界面活性物質(zhì)溶于水相中,在水相與未反應的模擬油乳化形成乳狀液時(shí),吸附到油水界面上,使得油水界面張力降低,油滴分散更細小,導致乳狀液上浮速率減小。同時(shí),由于界面活性物質(zhì)吸附到乳狀液的油滴表面,使Zeta電位絕對值增加(見(jiàn)表2),油珠間的靜電斥力增強,使油珠間聚集速率降低。因此,反應后的水相與模擬油形成的乳狀液,比未反應Na2CO3溶液與模擬油乳化所形成的乳狀液的濁度大,乳狀液的穩定性增強。
圖3 Na2CO3溶液與模擬油反應不同時(shí)間后產(chǎn)物的乳狀液穩定性
由圖3(b)可以看出,Na2CO3溶液與模擬油反應后的油相與模擬水乳化時(shí)所形成的乳狀液,比未反應模擬油與模擬水乳化所形成的乳狀液的濁度大,且用稀釋法鑒別均為O/W型乳狀液。這表明與Na2CO3溶液反應后的油相與模擬水乳化所形成的乳狀液的穩定性,大于未反應模擬油與模擬水乳化所形成的乳狀液的穩定性。原因是原油中的一些組分與弱堿長(cháng)時(shí)間反應生成油溶性的界面活性物質(zhì);界面活性物質(zhì)溶于油相中,在油相與模擬水乳化形成乳狀液時(shí),吸附到油水界面上,使得油水界面張力降低,油滴分散更細小,導致乳狀液中油滴上浮速率減小。因此,反應后的油相與模擬水形成的乳狀液,比模擬油與模擬水乳化所形成的乳狀液的濁度大,乳狀液的穩定性增強。
3結論
(1)在三元復合驅過(guò)程中,隨著(zhù)Na2CO3溶液與模擬油反應時(shí)間的增加,反應后溶于水相的界面活性物質(zhì)增多,反應后的水相與原油模擬油間的界面張力逐漸降低,但界面剪切黏度變化不明顯。
(2)隨著(zhù)Na2CO3溶液與模擬油反應時(shí)間的增加,反應后的水相與原油模擬油形成的乳狀液油滴表面的Zeta電位絕對值逐漸增大,且形成的O/W型乳狀液的穩定性增強。
(3)與Na2CO3溶液與模擬油乳化所形成的乳狀液相比,Na2CO3溶液與模擬油反應后的水相與模擬油形成的乳狀液的穩定性增強。與模擬油與模擬水乳化所形成的乳狀液相比,Na2CO3溶液與模擬油反應后的油相與模擬水形成的乳狀液的穩定性增強。