合作客戶(hù)/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
推薦新聞Info
-
> 受磷脂雙分子層啟發(fā)構建ZIBs兩性L(fǎng)B膜——制備高性能碘正極新思路
> 納米活性顆粒表面潤濕性測量方法及具體操作步驟
> 人工沖洗升級為超聲波清洗,可改善新能源電池沖壓配件的表面張力
> LB法組裝Silicalite-1型分子篩晶粒層,制備出高度b-軸取向的ZSM-5分子篩膜
> 微量天平高靈敏測定雞肉中磺胺類(lèi)藥物含量
> 超低軌衛星環(huán)境效應研究也會(huì )用到超微量天平?
> 基于微納米二氧化硅粒子薄膜制備超疏水滌綸織物
> LB膜技術(shù)制備納米薄膜保護鋰電池極片的方法【發(fā)明方案】
> 毛細現象:表面張力和接觸角兩者有什么關(guān)系?
> 超微量天平應用于高阻燃輻照交聯(lián)低煙無(wú)鹵聚烯烴制備
合成脂質(zhì)體類(lèi)姜黃素納米粒子的自組裝——結論、致謝!
來(lái)源:上海謂載 瀏覽 931 次 發(fā)布時(shí)間:2021-11-18
四、結論
核-殼納米顆粒(或粘土結構)的穩定自組裝形成,姜黃素位于核中,納米粘土位于電暈中。粒子的典型尺寸為150 nm,表面帶負電(zeta電位~25 mV)。通過(guò)zeta電位(如圖3所示)、自組裝系統的能量(如圖5(B)和6(B)所示)、20天內的恒定DLS計數率(如ESI?中的圖S3所示),確認顆粒(由0.05%納米粘土形成)的穩定性,以及20天后拍攝的SEM圖像的類(lèi)似粒度分布(如ESI?中的圖S4所示)。組裝證明了疏水(核)和親水(殼)粒子與軟可調界面區共存。自組裝的主要原因是姜黃素納米顆粒之間的主要吸引力和納米粘土片提供的排斥力之間的復雜平衡。疏水區和親水區之間的界面區域在形成和穩定過(guò)程中起著(zhù)關(guān)鍵作用。它充分平衡了排斥屏障與姜黃素納米顆粒中普遍存在的疏水吸引力(如圖5(A)和6(A)所示),這阻止了姜黃素納米顆粒的聚集并導致粘粒組裝的形成。一些粘土顆粒的自組裝被發(fā)現對納米粘土團的大小很敏感,因為它調節了系統中的排斥力。對于這些結構的穩定形成,存在一個(gè)臨界閾值大小的納米粘土團簇(L<80nm和s<100nm)。隨著(zhù)粘土顆粒自組裝電位的增大,一些粘土顆粒的自組裝電位降低。簡(jiǎn)言之,我們最終證明,即使在沒(méi)有任何表面活性劑的情況下,當相互作用力被調整以引起微妙的平衡時(shí),在無(wú)機粘土血小板存在的情況下也可以形成脂質(zhì)體樣結構或穩定的姜黃素納米粒。所形成的粘粒結構在生物物理學(xué)領(lǐng)域可能有不同的應用。粘土小體組件預計對系統的pH值敏感,因此它可能適用于將裝載在堆芯中的貨物運送到目標位置。
圖6足跡直徑對粘粒組件的影響。(A) 作為界面區域厚度函數的能量變化(L?60 nm,T?298 K,f?0.5,姜黃素納米顆粒半徑R?50 nm,疏水衰減長(cháng)度x0?1 nm,界面張力?40 mN m-1)。(B) 粘粒–粘粒相互作用作為粒間分離D的函數,使用方程(5)計算。對于更大的封裝外形直徑,能量最小值變得更深,對于大于100 nm的s,能量最小值變得更有吸引力。
致謝
這項工作得到了尼赫魯大學(xué)授予NP的訪(fǎng)客獎學(xué)金的支持。NP和KR承認印度政府科學(xué)技術(shù)部的激勵教員獎。我們感謝Akanksha Sharma博士在該大學(xué)高級研究?jì)x器設備的SEM測量方面提供的幫助。NP感謝Matthias Weiss教授的實(shí)驗室設施和有用的討論。
參考
1 Y. Gao, C. Berciu, Y. Kuang, J. Shi, D. Nicastro and B. Xu, ACS Nano, 2013, 7, 9055–9063.
2 G. Helgesen, E. Svasand and A. T. Skjeltorp, J. Phys.: Condens. Matter, 2008, 20, 204127, DOI: 10.1088/0953-8984/20/20/ 204127.
3 M. Grzelczak, J. Vermant, E. M. Furst and L. M. Liz-Mirzan, ACS Nano, 2010, 4, 3591–3605.
4 A. K. Boal, F. Ilhan, J. E. DeRouchey, T. Thurn-Albrecht, T. P. Russell and V. M. Rotello, Nature, 2000, 404, 746–748.
5 Y. Xia, T. D. Nguyen, M. Yang, B. Lee, A. Santos, P. Podsiadlo, Z. Tang, S. C. Glotzer and N. A. Kotov, Nat. Nanotechnol., 2011, 6, 580–587.
6 G. M. Whitesides and B. Grzybowski, Science, 2002, 295, 2418.
7 E. E. Meyer, K. J. Rosenberg and J. Israelachvili, PNAS, 2006, 103, 15739–15746.
8 N. I. Lebovka, Adv. Polym. Sci., 2014, 255, 57–96.
9 A. S. Iglesias, M. Grzelczak, T. Altantzis, B. Goris, J. PerezJuste, S. Bals, G. V. Tendeloo, G. V. Stephan, H. Donaldson Jr, B. F. Chmelka, J. N. Israelachvili and L. M. Liz-Marzan, ACS Nano, 2012, 12, 11059–11065.
10 A. Laouini, C. Jaafar-Maalej, I. Limayem-Blouza, S. Sfar, C. Charcosset and H. Fessi, J. Colloid Sci. Biotechnol., 2012, 1, 147–168.
11 T. M. Allena and P. R. Cullis, Adv. Drug Delivery Rev., 2013, 65, 36–48.
12 M. J. Ostro and P. R. Cullis, Am. J. Hosp. Pharm., 1989, 46, 1576–1587.
13 A. Samad, Y. Sultana and M. Aqil, Curr. Drug Delivery, 2007, 4, 297–305.
14 P. da Silva Malheiros, D. J. Daroit and A. Brandelli, Trends Food Sci. Technol., 2010, 21, 284–292.
15 Z. Nie, A. Petukhova and E. Kumacheva, Nat. Nanotechnol., 2010, 5, 15–25.
16 E. Busseron, Y. Ruff, E. Moulin and N. Giuseppone, Nanoscale, 2013, 5, 7098–7140.
17 M. Rad-Malekshahi, L. Lempsink, M. Amidi, W. E. Hennink and E. Mastrobattista, Bioconjugate Chem., 2016, 27, 3–18.
18 R. M. Gorgoll, T. Tsubota, K. Harano and E. Nakamura, J. Am. Chem. Soc., 2015, 137, 7568–7571.
19 W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl and E. G′orecka, Nat. Commun., 2015, DOI: 10.1038/ ncomms7590.
20 M. M. Yallapu, M. Jaggi and S. C. Chauhan, Curr. Pharm. Des., 2013, 19, 1994–2010.
21 Y. Manolova, V. Deneva, L. Antonov, E. Drakalska, D. Momekova and N. Lambov, Spectrochim. Acta, Part A, 2014, 132, 815–820.
22 P. Anand, A. B. Kunnumakkara, R. A. Newman and B. B. Aggarwal, Mol. Pharm., 2007, 4, 807.
23 H. Hatcher, R. Planalp, J. Cho, F. M. Torti and S. V. Torti, Cell. Mol. Life Sci., 2008, 65, 1631.
24 Y. Zhang, C. Yang, W. Wang, J. Liu, Q. Liu, F. Huang, L. Chu, H. Gao, C. Li, D. Kong, Q. Liu and J. Liu, Sci. Rep., 2016, 6, 1– 12.
25 X. Yang, Z. Li, N. Wang, L. Li, L. Song, T. He, L. Sun, Z. Wang, Q. Wu, N. Luo, C. Yi and C. Gong, Sci. Rep., 2015, 5, 1–15.
26 D. Wang, S. M. Veena, K. Stevenson, C. Tang, B. Ho, J. D. Suh, V. M. Duarte, K. F. Faull, K. Mehta, E. S. Srivastan and M. B. Wang, Clin. Cancer Res., 2008, 14, 6228–6236.
27 V. Gupta, A. Aseh, C. N. Rios, B. B. Aggarwal and A. B. Mathur, Int. J. Nanomed., 2009, 4, 115–122.
28 R. K. Das, N. Kasoju and U. Bora, Nanomedicine, 2010, 6, 153– 160.
29 S. Bisht, G. Feldmann, S. Soni, R. Ravi, C. Karikar, A. Maitra and A. Maitra, J. Nanobiotechnol., 2007, 5, 3–21.
30 Y. He, Y. Huang and Y. Cheng, Cryst. Growth Des., 2010, 3, 1021–1024.
31 Bhawana, R. K. Basniwal, H. S. Buttar, V. K. Jain and N. Jain, J. Agric. Food Chem., 2011, 59, 2056–2061.
32 N. Pawar and H. B. Bohidar, Colloids Surf., A, 2009, 333, 120– 125.
33 B. Ruzicka, E. Zaccarelli, L. Zulian, R. Angelini, M. Sztucki, A. Moussaid, T. Narayanan and F. Sciortino, Nat. Mater., 2011, 10, 56–60.
34 R. K. Pujala, Dispersion Stability, Microstructure and Phase Transition of Anisotropic Nanodiscs, Springer Thesis, 2014, DOI: 10.1007/978-3-319-04555-9.
35 A. Faghihne jad and H. Zeng, Langmuir, 2013, 29, 12443– 12451.
合成脂質(zhì)體類(lèi)姜黃素納米粒子的自組裝——摘要、介紹
合成脂質(zhì)體類(lèi)姜黃素納米粒子的自組裝——材料和方法