合作客戶(hù)/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
推薦新聞Info
-
> 受磷脂雙分子層啟發(fā)構建ZIBs兩性L(fǎng)B膜——制備高性能碘正極新思路
> 納米活性顆粒表面潤濕性測量方法及具體操作步驟
> 人工沖洗升級為超聲波清洗,可改善新能源電池沖壓配件的表面張力
> LB法組裝Silicalite-1型分子篩晶粒層,制備出高度b-軸取向的ZSM-5分子篩膜
> 微量天平高靈敏測定雞肉中磺胺類(lèi)藥物含量
> 超低軌衛星環(huán)境效應研究也會(huì )用到超微量天平?
> 基于微納米二氧化硅粒子薄膜制備超疏水滌綸織物
> LB膜技術(shù)制備納米薄膜保護鋰電池極片的方法【發(fā)明方案】
> 毛細現象:表面張力和接觸角兩者有什么關(guān)系?
> 超微量天平應用于高阻燃輻照交聯(lián)低煙無(wú)鹵聚烯烴制備
水面上單分子層膜通過(guò)磷脂光控開(kāi)關(guān)實(shí)現可逆光學(xué)控制:結果和討論、結論
來(lái)源:上海謂載 瀏覽 826 次 發(fā)布時(shí)間:2022-06-23
結果和討論
表面壓力。在呈現VSFG光譜之前,我們首先報告了不同單分子膜的壓力-面積等溫線(xiàn)。圖2顯示了DT Azo-5P在光開(kāi)關(guān)兩種狀態(tài)下的等溫線(xiàn)。根據Kaganer等人23給出的含有氣相(G)、液相膨脹(LE)和凝聚相的廣義等溫線(xiàn),我們對等溫線(xiàn)進(jìn)行了初步賦值。當DT Azo-5P在其熱穩定反式狀態(tài)下壓縮時(shí),當表面壓力變得有限時(shí),發(fā)生轉變,低于每個(gè)分子約80?2。該躍遷被指定為從LE/G共存區到LE相的躍遷。在每個(gè)分子50?2處觀(guān)察到第二個(gè)壓力不連續,表明在凝聚相形成之前,從LE過(guò)渡到LE/凝聚共存。在每個(gè)分子的密度約為30?2時(shí),單層會(huì )坍塌。
圖2:反式和順式狀態(tài)下的光開(kāi)關(guān)脂質(zhì)DT Azo-5P的表面壓力與面積等溫線(xiàn)(實(shí)線(xiàn)),d75-DPPC的表面壓力與面積等溫線(xiàn)(虛線(xiàn)),以及光開(kāi)關(guān)兩種狀態(tài)下的1:5摩爾比的光開(kāi)關(guān)脂質(zhì)與d75 DPPC的表面壓力與面積等溫線(xiàn)(虛線(xiàn))。
順式狀態(tài)的光脂的等溫線(xiàn)(在沉積到水面之前用370nm光照射)看起來(lái)非常不同。首先,在密度低得多的情況下,壓力是有限的。這與早期對含偶氮苯分子2,24的觀(guān)察結果一致,很可能源于順式分子的較大分子足跡。8更大的分子足跡意味著(zhù)順式異構體的密度低于反式異構體的密度時(shí),會(huì )發(fā)生脂間相互作用和有限的表面壓力。其次,每個(gè)分子在55?2處發(fā)生轉變,這可能表明從LE相到更凝聚相的轉變。當每個(gè)分子的面積低于50?2時(shí),反式態(tài)的壓力顯著(zhù)高于順式態(tài)的壓力。
d75 DPPC的等溫線(xiàn)顯示了脂質(zhì)單分子膜的特征相:23 G/LE共存于每個(gè)分子100?2以上,LE直到大約60?2,然后是LE和凝聚相共存的平臺(由于相對較高的壓縮速度,在這種情況下不是很平坦),最后是凝聚相低于每個(gè)分子大約45?2。5:1 DPPC/DT偶氮-5P混合物的等溫線(xiàn)始終低于分離分子的等溫線(xiàn)。如果兩種不同的脂質(zhì)存在于分離良好的區域的表面上,或者如果它們理想地混合而沒(méi)有相互作用,那么可以預期混合物的等溫線(xiàn)是純脂質(zhì)等溫線(xiàn)的簡(jiǎn)單總和。25,26顯然,這里的情況并非如此,這表明這兩種脂質(zhì)是可混溶的,并形成非理想的混合單分子膜。由于在任何壓力下,混合物的每個(gè)分子的面積都低于兩個(gè)純取代基的分數面積之和,因此可以得出結論,這兩種類(lèi)型的脂質(zhì)具有吸引人的相互作用,25可能有不同的來(lái)源。首先,DT偶氮-5P頭基上的正電荷和DPPC上的兩性離子電荷可能導致DPPC和DT偶氮-5P之間的相互作用比同類(lèi)脂質(zhì)之間的相互作用更具吸引力。第二,在混合物中,頭基區域可能脫水,導致更緊密的堆積;第三,兩種脂質(zhì)的形狀不同:DT Azo-5P和DPPC分別為錐形和圓柱形。對于混合物,這也可能導致更致密的填料幾何結構。
圖3:。在密度為75?2/分子和壓力為~3 mN/m。共振信號疊加在大型非共振背景上,由于共振信號和非共振信號之間的干擾,導致色散線(xiàn)型。黑色虛線(xiàn)表示NR振幅設置為零時(shí)的DT Azo-5P信號。
DT Azo-5P單分子膜的振動(dòng)和頻發(fā)生光譜(VSFG)。圖3a描繪了在3 mN/m的表面壓力和75?2的分子面積下,處于反式狀態(tài)的光脂DT Azo-5P凝聚相中單層的灰色VSFG光譜。光譜顯示了CH2的共振(~2840 cm-1)和CH3對稱(chēng)拉伸模式(~2860 cm-1),CH2和CH3不對稱(chēng)拉伸模式~2890和2940 cm-1以及3000 cm-1以上的芳香CH信號,源自偶氮苯部分。2,11-13在3100 cm-1以上,光譜主要由來(lái)自水亞相的OH振動(dòng)控制。頻譜在低頻時(shí)有一個(gè)異常的高(非零)基線(xiàn),這表明一個(gè)高非共振信號。為了檢查這種可能性,使用以下表達式擬合光譜:11,12
磁化率包含一個(gè)非共振項,振幅為A0,相位相對于共振項j,以及一個(gè)共振項。后者通過(guò)共振頻率ωn、線(xiàn)寬2Γn和振幅An來(lái)描述n個(gè)振動(dòng)共振。共振項振幅的相對符號取自文獻。12,27,28擬合結果如圖3所示,為黑色。事實(shí)上,擬合顯示DT Azo-5P的非共振振幅比通常觀(guān)察到的脂質(zhì)單層(如DPPC)的非共振振幅大3倍(見(jiàn)下文)。圖3a中的黑色虛線(xiàn)曲線(xiàn)說(shuō)明了大非共振貢獻對信號的影響,該曲線(xiàn)表示使用DT Azo-5P共振響應的計算光譜(從擬合結果中獲得),但當非共振振幅設置為零時(shí)(水振幅設置為零,尾巴在CH區域也作為NR信號)。當NR振幅設置為零時(shí),我們觀(guān)察到,不僅背景降低,而且視共振信號大小減少了2到5倍,這取決于IR頻率。通過(guò)測量羅丹明6G的VSFG光譜,觀(guān)察到由于電子躍遷導致的類(lèi)似信號增強。29,30然而,在這種情況下,作者使用可見(jiàn)光與電子激發(fā)共振,因此他們進(jìn)行了雙共振實(shí)驗。DT-Azo-5P在800 nm處沒(méi)有電子躍遷,因此沒(méi)有雙共振效應;這種增強完全是非共振的。因此,對于目前的系統,非共振信號外差由于來(lái)自χNR(2)和χR(2)的交叉項(見(jiàn)等式1最后一行中的第二項和第三項)而產(chǎn)生共振信號,并增強信號,而不是直接影響χR(2),如羅丹明6G的結論。29,30因此,外差效應不僅是分子內的,而且是分子間的,并且可以直接用于增強高度稀釋樣品中的低信號,例如,通過(guò)簡(jiǎn)單地將含苯部分添加到單層中。這意味著(zhù),在這種情況下,VSFG光譜中的信號大小不僅僅是二次依賴(lài)于分子數量,而在大多數情況下,非共振貢獻非常小。在附錄中,我們證明,由于外差效應,在存在光脂的情況下,可以測量相對較低水平的DPPC。這種非共振外差可以提供一種檢測分子單分子膜中低濃度分子振動(dòng)響應的有用方法。
DT Azo-5P順式和反式振動(dòng)和頻發(fā)生光譜(VSFG)。為了獲得不同狀態(tài)下脂質(zhì)分子結構的信息,在輻照周期內測量了VSFG光譜。脂質(zhì)分子振動(dòng)提供有關(guān)分子構象、方向和順序的直接信息。11-18圖4a中描述了輻照周期內的典型表面壓力測量,該測量針對的是表面密度為75?2/分子的純DT Azo-5P單層。以順式和反式異構體的混合物形式鋪展的樣品依次以370和450 nm的波長(cháng)輻照~每個(gè)100秒。用370 nm輻照后,壓力上升至16 mN/m,而450 nm輻照導致壓力下降至3 mN/m,這與圖2中兩個(gè)等溫線(xiàn)之間的垂直轉換一致。圖4b分別顯示了順式和反式狀態(tài)在CH區域的VSFG光譜,其本質(zhì)上分別顯示出高表面壓力和低表面壓力。在非共振背景上(水平黑線(xiàn)標記為零),順式和反式構型的光譜顯示3000 cm-1以下烷基鏈的脂肪族CH2和CH3模式,以及3000 cm-1以上的芳香族CH拉伸模式2,11-13,如上所述。此外,在3100 cm-1以上,底層水的OH振動(dòng)信號明顯。圖4c中描繪了較大部分的水光譜,表明水信號在反式狀態(tài)下大約是順式狀態(tài)下的1.4倍,但其光譜形狀相似。
圖4:(a)在每分子75?2的面積處,脂質(zhì)/H2O界面處的光開(kāi)關(guān)脂質(zhì)的表面壓力作為時(shí)間的函數。370和450 nm光照射~100秒分別產(chǎn)生cis(高壓)和trans(低壓)狀態(tài)。壓力的微小劇烈波動(dòng)是由于樣品高度的變化,以校正水的蒸發(fā)。(b和c)CH和OH區域(灰色)中相應的VSFG光譜,以及洛倫茲線(xiàn)形狀模型的擬合(見(jiàn)正文)。為了清晰起見(jiàn),對光譜進(jìn)行了偏移。t1至t4對應于面板a中進(jìn)行光譜測量的時(shí)間。(d)脂質(zhì)尾部方向示意圖。光開(kāi)關(guān)脂質(zhì)的偶氮苯部分用灰色圓圈表示。
脂尾的分子順序可以從C-H拉伸區的VSFG反應中獲得。對于有序的磷脂單層,亞甲基CH2的VSFG強度較低,而甲基CH3的拉伸強度較高,這分別是由于全反式烷基鏈的反轉對稱(chēng)性導致亞甲基CH2偶極子的取消和甲基基團的集體取向,從而導致甲基CH3偶極子的有效相干加成。另一方面,當缺陷形成時(shí),烷基鏈內的反轉對稱(chēng)性被破壞,亞甲基對稱(chēng)拉伸模式的相對強度增加;同時(shí),無(wú)序降低了甲基的強度。因此,可以通過(guò)脂質(zhì)烷基鏈中甲基和亞甲基的強度或振幅比來(lái)量化空氣-水界面上脂質(zhì)的順序。31在磷脂的反式和順式狀態(tài)之間切換,CH2對稱(chēng)拉伸(2848 cm-1)和CH3對稱(chēng)拉伸(2871 cm-1)確實(shí)顯示出差異,如圖4b所示。特別是,在反式情況下觀(guān)察到較高的CH3/CH2比率,表明盡管壓力較低,但烷基鏈中的階數較高。這種在反式狀態(tài)下觀(guān)察到的更高分子順序與MD模擬結果一致,MD模擬結果表明,在反式狀態(tài)下尾部更長(cháng)。8,32
為了獲得更多關(guān)于峰值振幅和脂尾分子順序的定量信息,使用上述模型對光譜進(jìn)行擬合。擬合結果如圖4b中的黑線(xiàn)所示。從擬合中不同洛倫茲峰的振幅中,我們清楚地發(fā)現,對于對稱(chēng)拉伸模式,CH3/CH2振幅比為6(在反式狀態(tài)下比順式狀態(tài)下高3倍)。與水信號類(lèi)似的擬合(圖4c,黑線(xiàn))表明,非共振信號的增加不是反式情況下水信號更高的原因,因為共振貢獻比非共振貢獻大得多。反式的共振水響應強度是順式的1.4倍。
為了弄清分子的取向是否隨開(kāi)關(guān)而改變,我們在不同的極化下進(jìn)行了實(shí)驗。結果如圖5所示。與圖4中的數據相比,反式和順式之間的差異更為顯著(zhù),因為脂質(zhì)密度更高。PPP數據(圖5b)顯示了與SSP相同的行為:從trans到cis時(shí),CH3對稱(chēng)和非對稱(chēng)拉伸減少。第一個(gè)是在2860 cm-1處可見(jiàn)的光譜下降,而第二個(gè)是在2940 cm-1處導致下降(由于負振幅,峰值顯示為下降)。密度稍低的SPS光譜顯示出細微差異。很明顯,三種不同的極化顯示出相同的趨勢,從中我們可以得出結論,在系統中,單層內沒(méi)有發(fā)生重大的分子集體再取向。
圖5:。(a)在P的反式和順式狀態(tài)下,DT-Azo-5P的純單層在65?2處的歸一化VSFG光譜與SSP極化分別為6和20 mN/m。(b)與a部分類(lèi)似,但PPP極化。(c)反、順態(tài)SPS極化中的SFG譜(~每分子78?2),壓力為2和15 mN/m。三個(gè)面板具有相同的垂直刻度。
我們想從我們的數據中推斷出分子構象的圖片。這樣的圖片必須一致地解釋反式和順式狀態(tài)的以下觀(guān)察結果:(i)反式狀態(tài)的分子順序增加,盡管(ii)反式狀態(tài)的壓力較低,(iii)反式狀態(tài)的水信號較大。由于較大的水信號意味著(zhù)更多的水分子排列,我們可以得出結論,在反式情況下,帶負電的脂質(zhì)下面的水比順式情況下的水排列得更整齊。一般來(lái)說(shuō),頭部基團的電荷決定了由于靜電勢而排列的水的數量:在所有其他條件相同的情況下,帶電脂質(zhì)排列的水比兩性脂質(zhì)排列的水多。(參見(jiàn),例如,參考文獻28)順式和反式之間的主要區別是偶氮苯部分周?chē)呐紭O矩,順式和反式偶氮苯的偶極矩分別為4.5和1.3 D。33順式態(tài)中較高的偶極矩使得與水的相互作用更加有利。5顯然,在順式反應中,部分偶氮苯部分與水相互作用,從而降低水信號,可能是通過(guò)降低界面處的表面電位。當順式偶氮苯基團中的大偶極子足夠靠近表面以屏蔽磷酸鹽頭基團中的部分負電荷時(shí),可以解釋這些觀(guān)察結果。偶氮苯部分的偶極矩垂直于NdN鍵。為了使偶極子自身垂直于表面平面定向,脂質(zhì)尾部必須形成一個(gè)環(huán),這確實(shí)是之前針對偶氮苯基中性表面活性劑5和含偶氮苯聚合物提出的。2這種情況在圖4d的頂部面板中進(jìn)行了示意性描述。由于分子足跡的大幅增加,環(huán)的形成也解釋了順式狀態(tài)比反式狀態(tài)壓力更高的原因。很可能,在反式狀態(tài)下,π-π鍵比與水的相互作用更有利。順式情況下形成環(huán),反式情況下拉長(cháng)鏈的這種情況也解釋了觀(guān)察到的反式情況下脂尾的順序增加??傊?,順式狀態(tài)下的低階、低水信號和高壓力都與分子圖片一致,其中至少部分脂尾形成環(huán),因此具有大偶極矩的順式偶氮苯基團與水(近)接觸。在橫穿狀態(tài)下,尾巴更長(cháng),不與水接觸。圖4d中給出了可能的分子圖的草圖。
對于DT Azo-3P,VSFG光譜與DT Azo-5P的光譜相似。這些分子的偶氮苯部分在鏈中的位置不同:DT Azo-5P和DT Azo-3P分別具有遠離首基的偶氮苯部分5和3個(gè)CH2基團。我們在兩種分子的光譜中觀(guān)察到相同的光譜特征,并且兩種脂質(zhì)在反式狀態(tài)下的階數更高。對于尾部末端帶有偶氮苯基團的脂質(zhì)(DT Azo-9P),順式和反式的光譜是不可分辨的;顯然,如果分子開(kāi)關(guān)完全位于尾部末端,則脂質(zhì)的排序不會(huì )受到影響。上述外差效應對于DT Azo-3P、DT Azo-5P和DT Azo-9P非常相似。
圖6:結果:DT Azo-5P/d75 DPPC的1:5混合物在脂質(zhì)/水界面上的面積為60?2/分子。(a)表面壓力與時(shí)間的關(guān)系。370和450 nm光照射~100秒分別產(chǎn)生cis(高壓)和trans(低壓)狀態(tài)。壓力的微小劇烈波動(dòng)是由于樣品高度的變化,以校正水的蒸發(fā)。(b)相應的VSFG光譜(灰色)以及CD區域的擬合。為了清晰起見(jiàn),對光譜進(jìn)行了偏移。(c)VSFG光譜(灰色)與fits一起引導眼睛進(jìn)入CH區域。底部曲線(xiàn)顯示了P下純d75 DPPC的光譜~40 mN/m.(d)脂尾方向示意圖。光開(kāi)關(guān)脂質(zhì)的偶氮苯部分用灰色圓圈表示。
DT Azo-5P和DPPC的混合物。為了研究DT-Azo-5P對傳統脂質(zhì)構象行為的影響,我們制備了由DPPC和DT-Azo-5P組成的單分子膜。為了能夠容易地區分不同的脂質(zhì),我們在這些實(shí)驗中使用了d75 DPPC和非中性DT Azo-5P。這樣,我們可以在很大程度上區分兩種不同脂質(zhì)的分子振動(dòng)。不幸的是,d75 DPPC分子中仍然存在5個(gè)氫原子(圖1),這會(huì )產(chǎn)生VSFG信號,通過(guò)查看圖6c和7c中的底部曲線(xiàn)可以觀(guān)察到,圖6c和7c顯示了純d75 DPPC的光譜(完全氘化的DPPC在市場(chǎng)上無(wú)法買(mǎi)到)。圖6c中約2960 cm-1處的峰值源于這些CH組的振動(dòng),這些CH組位于d75-DPPC的頭部和尾部之間。該峰在純磷脂單層中不存在(圖4b)。圖6a顯示了d75 DPPC/DT Azo-5P的5:1混合物在每個(gè)分子60?2下的輻照循環(huán)。表面壓力在3到9 mN/m之間重復變化。CD和CH光譜范圍內的相應VSFG光譜分別如圖6b和c所示。CD范圍內的光譜與之前報道的純d62-DPPC34的光譜非常匹配,表明頭部基團(膽堿基團)的CH3基團對光譜的貢獻可以忽略不計:只有尾部的振動(dòng)模式可見(jiàn)。不同的峰可分配如下:CD3對稱(chēng)拉伸(2066 cm-1)、CD2對稱(chēng)拉伸(2100 cm-1)、CD3費米共振(2124 cm-1)、CD2不對稱(chēng)拉伸(2195 cm-1)和CD3不對稱(chēng)拉伸(2218 cm-1)。如上所述,與純DPPC相比,光開(kāi)關(guān)脂質(zhì)的存在表現為更高的非共振背景。在這種低密度的光脂中,在CD(DPPC)和CH(DPPC和光脂)區域,觀(guān)察到的光開(kāi)關(guān)脂質(zhì)的反式和順式SFG光譜之間的差異明顯小于純單層。CH區域的光譜(圖6c)主要由3000 cm-1以上的水帶、2960 cm-1處DPPC的峰值以及2850 cm-1左右的光開(kāi)關(guān)脂質(zhì)的CH2和CH3對稱(chēng)拉伸振動(dòng)控制。由于表面上大約只有17%的分子是可光開(kāi)關(guān)的脂質(zhì),并且根據一階近似值,VSFG信號二次依賴(lài)于分子的數量,很明顯,這些分子的振動(dòng)在光譜中并不明顯。在總密度較高(但DPPC:DT偶氮-5P比率恒定)時(shí),順式和反式狀態(tài)之間的差異較大,如圖7 b和c部分所示,其中密度為30?2/分子,壓力在26和32 mN/m之間交替(圖7a)。如果在反式狀態(tài)下存在光開(kāi)關(guān)脂質(zhì),則不同峰值的振幅更高,這部分是由于反式狀態(tài)下NR背景更高。
圖7:。結果:對于1:5的DT Azo-5P/d75 DPPC混合物,在脂質(zhì)/水界面上,每個(gè)分子的面積為30?2。(a)表面壓力與時(shí)間的關(guān)系。370和450 nm光照射~100秒分別產(chǎn)生cis(高壓)和trans(低壓)狀態(tài)。壓力的微小劇烈波動(dòng)是由于樣品高度的變化,以校正水的蒸發(fā)。順式狀態(tài)下表面壓力的降低可能是由于單層的松弛或膠束或囊泡的形成減少了表面的脂質(zhì)量。(b)相應的VSFG光譜(灰色)以及CD區域的擬合。為了清晰起見(jiàn),對光譜進(jìn)行了偏移。插圖顯示了相互重疊的反式和順式光譜,以強調差異。(c)VSFG光譜(灰色)與fits一起引導眼睛進(jìn)入CH區域。底部曲線(xiàn)顯示了P下純d75 DPPC的光譜~40 mN/m.(d)脂尾方向示意圖。光開(kāi)關(guān)脂質(zhì)的偶氮苯部分用灰色圓圈表示。
圖8:。d75 DPPC與DT Azo-5P比例為5:1的實(shí)驗中d75 DPPC的擬合結果(左)和純正常DPPC的擬合結果(右)。(a)CD3對稱(chēng)拉伸振動(dòng)模式的振幅隨不同密度光開(kāi)關(guān)脂質(zhì)狀態(tài)的變化;(b)CD2對稱(chēng)拉伸振動(dòng)模式的振幅隨不同密度光開(kāi)關(guān)脂質(zhì)狀態(tài)的變化;右圖顯示了純DPPC在可比壓力下與左圖相似的結果,其中(c)為CH3對稱(chēng)拉伸振動(dòng)模式的振幅,(d)為CH2對稱(chēng)拉伸模式的振幅。共振的寬度和頻率在擬合中是固定的。
為了更定量地了解分子順序,圖8 a和b部分給出了四種不同密度下DPPC的CD3和CD2對稱(chēng)拉伸模式的振幅,擬合結果如圖6b和7b(黑線(xiàn))所示。正如預期的那樣,在順式和反式狀態(tài)下,CD3振幅隨著(zhù)密度的增加而增加,CD2振幅則隨著(zhù)密度的增加而減少(每個(gè)分子的面積較低),如圖中不同的顏色所示。這是由于隨著(zhù)密度的增加,通過(guò)減少笨拙缺陷的數量來(lái)矯直烷基鏈。隨著(zhù)密度的增加,階數增加,表面壓力也增加。值得注意的是,當通過(guò)從反式到順式(而不是通過(guò)增加表面覆蓋率)來(lái)增加壓力時(shí),CD3和CD2之間的反相關(guān)仍然存在,但現在壓力的增加使CD3振幅下降,CD2振幅上升(我們注意到,鑒于實(shí)驗數據點(diǎn)上的誤差條,后一個(gè)結論是暫時(shí)的)。為了強調DPPC/DT Azo-5P混合物的這種違反直覺(jué)的行為,圖8的右面板顯示了相同對應壓力下純正常DPPC的擬合結果。右面板中的每個(gè)數據點(diǎn)模擬左面板中點(diǎn)的壓力;我們比較壓力,而不是密度。顯然,改變壓力對純DPPC的影響比對混合物的影響大得多。在非常低的壓力(P=3)下,混合物中CD3對稱(chēng)拉伸模式有明顯的信號,但純DPPC幾乎沒(méi)有信號;光開(kāi)關(guān)脂質(zhì)的存在誘導了已經(jīng)處于非常低壓力下的高階CD3基團。對于高壓,純DPPC的CH2模式幾乎完全消失,而對于混合物,仍然存在清晰的CD2信號;如果存在DT Azo-5P,則尾部的有序性較低。這并不奇怪,因為DT偶氮-5P脂質(zhì)會(huì )在完全壓縮的DPPC單層中起到填充缺陷的作用。此外,在低密度(壓力高達~15 mN/m)改變壓力對純DPPC的影響比對混合物的影響更顯著(zhù)。顯然,光開(kāi)關(guān)脂質(zhì)對壓力的影響大于對脂質(zhì)分子順序的影響。
因此,一個(gè)有趣的觀(guān)察結果是,當壓力通過(guò)光開(kāi)關(guān)增加時(shí),光脂質(zhì)和DPPC的脂質(zhì)單層中的分子無(wú)序度隨著(zhù)壓力的增加而增加。這不僅適用于磷脂本身,也適用于混合物。這似乎違反直覺(jué),因為人們可能會(huì )認為,在更高的壓力下,增加的脂-脂相互作用將導致烷基鏈更有序。然而,這種現象很容易通過(guò)注意以下幾點(diǎn)來(lái)解釋?zhuān)罕砻鎵毫Φ扔趩挝幻娣e表面自由能的減少。表面自由能主要由脂質(zhì)與水界面的靜電和偶極相互作用以及脂質(zhì)頭基之間的相互作用決定;脂肪烷基鏈之間的范德華相互作用相對較弱。因此,當通過(guò)壓縮單分子膜來(lái)增加壓力時(shí),這主要是界面處靜電相互作用增加的結果,而用于排列這些烷基鏈的烷基鏈之間范德華相互作用的增加預計將保持相對較弱。然而,當通過(guò)將磷脂從反式轉換為順式來(lái)降低表面自由能(增加表面壓力)時(shí),密度不會(huì )增加。相反,我們認為順式狀態(tài)下表面自由能的降低(增加壓力)是由于水界面上的靜電相互作用的增加,因為其偶極子較大。因此,我們的結果表明,偶氮苯偶極子接近表面,導致順式的足跡明顯大于反式,這可能是由于某些尾部形成了環(huán)。這意味著(zhù),有效地,頭基區域變得更加擁擠,但含有烷基鏈的非極性區域變得不那么密集,從而允許烷基鏈具有更大的構象自由度和更少的烷基鏈順序。因此,盡管壓力增加,但觀(guān)察到烷基鏈順序減少。
圖6d和7d顯示了脂質(zhì)順?lè )词睫D換如何同時(shí)產(chǎn)生較高壓力和較低階數的示意圖。
結論
我們在這里報告了VSFG測量,以研究純光開(kāi)關(guān)脂質(zhì)DT Azo-5P以及這種光開(kāi)關(guān)脂質(zhì)與傳統脂質(zhì)DPPC的混合物的單層分子結構。DT Azo-5P在順式狀態(tài)下的單分子膜的壓力高于50 A2/分子,但在烷基鏈中的順序較低。由于偶氮苯偶極子與水的相互作用,界面上的靜電相互作用更強,順式狀態(tài)也顯示出較低的信號,并具有較大的足跡,從而產(chǎn)生較大的壓力,這可能導致脂尾形成環(huán)。順式狀態(tài)下脂類(lèi)下面的水的較弱VSFG信號表明,在這種情況下,偶氮苯部分與水接觸,部分減弱了脂類(lèi)頭部負電荷的影響。為了與水接觸,尾巴必須形成一個(gè)環(huán),從而導致更高的無(wú)序度。
對于脂質(zhì)混合物,光開(kāi)關(guān)狀態(tài)的影響明顯表現在表面壓力的變化中,但DT偶氮-5P順式和反式狀態(tài)之間的分子水平差異不太明顯。然而,在高密度和高壓下,CD3和CD2拉伸模式的振幅表現出與直覺(jué)相反的行為。與高壓狀態(tài)相比,在低壓狀態(tài)下,傳輸狀態(tài)下,CD3模式的振幅更大,CD2模式的振幅更小。對于DPPC的純層,壓力越高,CH3對稱(chēng)拉伸模式的信號越高,CH2模式的信號越低。顯然,光開(kāi)關(guān)的存在以一種不同的方式影響DPPC脂質(zhì)尾部的結構,這僅僅是因為壓力的變化。
附錄
為了證明外差效應是信號增強的原因,我們測量了DPPC和DT-Azo-5P混合物的VSFG光譜。為了獲得分子特異性,我們在本實(shí)驗中使用了d75 DPPC,并檢查了CD振動(dòng)區。作為參考樣品,我們使用正常DPPC(未稀釋?zhuān)┖蚫75 DPPC的混合物。換句話(huà)說(shuō),我們比較了d75 DPPC和DT Azo-5P的不同混合物與d75 DPPC和DPPC的混合物(未稀釋?zhuān)?。摩爾d75 DPPC/DT偶氮-5P比等于摩爾d75 DPPC/DPPC(未稀釋?zhuān)┍?。我們總是以相同的方式制備單層,這樣每個(gè)分子的面積~35?2(凝聚相)。對于混合物中存在的DPPC或DT Azo-5P的不同部分,d75 DPPC產(chǎn)生的VSFG光譜如圖9 a和b部分所示。正如預期的那樣,對于d75 DPPC/DPPC(未稀釋?zhuān)┗旌衔铮▓D9a),VSFG信號隨著(zhù)層中正常DPPC分數的增加而大致呈二次方減小。在這種情況下,非共振項很小,因此信號由方程1最后一行中的最后一項控制(ISFGχ*R(2)χR(2)IVISIIR)。對于含DT Azo-5P的混合物,效果截然不同。背景隨著(zhù)DT Azo-5P量的增加而增加,背景頂部的信號大小大致不變,盡管d75 DPPC量從下到上減少。通過(guò)用上述模型擬合數據,我們可以提取信號的非共振和共振貢獻。共振貢獻,作為CD振幅之和,如圖9c所示,作為混合物中存在的分數d75 DPPC的函數。顯然,對于這兩個(gè)樣本,振幅隨著(zhù)d75 DPPC的分數呈線(xiàn)性增加,并且兩條曲線(xiàn)相互重疊。因此,具有強NR信號的分子的存在僅影響非共振部分,但有趣的是,它放大了相鄰分子的信號。
圖9:。(a)正常DPPC和d75 DPPC不同混合物的CD區VSFG光譜。圖中給出了混合物中正常DPPC的百分比。為清晰起見(jiàn),光譜偏移,細線(xiàn)表示零。(b)與a部分類(lèi)似,但適用于DT Azo-5P與d75 DPPC的混合物。(c)通過(guò)擬合VSFG光譜獲得的CD振動(dòng)振幅之和,如文中所述,作為含正常DPPC或DT Azo-5P的二元混合物中分數d75 DPPC的函數。在本實(shí)驗中,為了獲得混合物的高質(zhì)量數據,紅外注量很高,導致通過(guò)VSFG光譜中相對較高的CH2和CD2振幅觀(guān)察到的脂質(zhì)尾部出現小的無(wú)序。
作者信息
通訊作者
*電子郵件:bonn amolf.nl.
確認書(shū)
這項工作是“材料粘貼voor Fundamenteel Onderzoek(FOM)”研究項目的一部分,該項目由“荷蘭voor Wetenschapelijk Onderzoek(NWO)”組織資助。