合作客戶(hù)/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> ABA型聚醚改性有機硅表面活性劑在不同溶劑中的泡沫性能的相關(guān)性
> 基于藥液表面張力測定估算蘋(píng)果樹(shù)最大施藥液量的方法(一)
> 基于天然植物油的酰胺胺氧化合物的合成表征及表面性質(zhì)——結果和討論
> 棕櫚酸酯淀粉糊液理化性質(zhì)及替代洗衣粉配方中的LAS去污系數研究(一)
> 不同溫度壓力下CO2和混合烷烴的界面張力測定(二)
> 酚胺樹(shù)脂聚醚型破乳劑分子結構、濃度對油-水界面張力的影響——實(shí)驗部分
> 表面張力和重力驅動(dòng)下液態(tài)釬料填充焊縫流動(dòng)模型構建及效果評估(三)
> 正構烷烴與異構烷烴比哪個(gè)界面張力高?界面張力對?異構烷烴的影響
> 膜分析儀應用:膽固醇對 hBest1/POPC 和 hBest1/SM Langmuir 單分子層的
> 純水表面張力與液膜拉伸形變量關(guān)系|純水表面張力測試數據
推薦新聞Info
-
> Langmuir槽法研究不同電性Gemini表面活性劑對界面吸附膜性質(zhì)的影響(三)
> Langmuir槽法研究不同電性Gemini表面活性劑對界面吸附膜性質(zhì)的影響(二)
> Langmuir槽法研究不同電性Gemini表面活性劑對界面吸附膜性質(zhì)的影響(一)
> 生物表面活性劑產(chǎn)生菌的篩選及對PAHs污染環(huán)境的修復效果研究(四)
> 生物表面活性劑產(chǎn)生菌的篩選及對PAHs污染環(huán)境的修復效果研究(三)
> 生物表面活性劑產(chǎn)生菌的篩選及對PAHs污染環(huán)境的修復效果研究(二)
> 生物表面活性劑產(chǎn)生菌的篩選及對PAHs污染環(huán)境的修復效果研究(一)
> 表面活性劑生物降解度測定方法種類(lèi)及表面張力法的優(yōu)勢——結果與分析、結論
> 表面活性劑生物降解度測定方法種類(lèi)及表面張力法的優(yōu)勢——摘要、實(shí)驗部分
> 炔屬二醇表面活性劑對環(huán)氧灌漿材料漿液性能、灌體的滲透性影響(二)
土壤裂隙發(fā)育過(guò)程中氣—液界面張力因素
來(lái)源:土壤學(xué)報 瀏覽 1309 次 發(fā)布時(shí)間:2023-10-09
試樣的裂隙發(fā)育過(guò)程與環(huán)境溫度密切相關(guān),此外,氣—液界面張力(表面張力)因素也會(huì )對裂隙發(fā)育有制約作用。從細觀(guān)角度來(lái)看,土樣基質(zhì)吸力是導致裂隙產(chǎn)生、發(fā)育的重要因素之一,初始試樣表層土體隨著(zhù)蒸發(fā)的開(kāi)始,從飽和狀態(tài)變?yōu)榉秋柡蜖顟B(tài),從而產(chǎn)生基質(zhì)吸力,并在表層土體中形成張力應力。當土壤顆粒間的張拉應力高于土壤顆粒間的抗拉強度時(shí),就會(huì )有裂隙出現。土體裂隙產(chǎn)生、發(fā)育是一種基質(zhì)吸力的內力作用結果,是一種張拉應力破壞的形式。在干濕循環(huán)條件下,基質(zhì)吸力隨干濕循環(huán)而產(chǎn)生周期性變化,從而導致土體張拉應力等產(chǎn)生周期性變化,促進(jìn)了裂隙發(fā)育。因此,基質(zhì)吸力是制約裂隙產(chǎn)生和發(fā)育的關(guān)鍵力學(xué)參數。而表面張力和基質(zhì)吸力之間的關(guān)系滿(mǎn)足毛細定理:
式中,(ua-uw)為基質(zhì)吸力,Pa;Ts為水—氣分界面的表面張力,N m-1;Rs為曲率半徑,m;α為接觸角,°。
圖1基底表面三種液滴的幾何形態(tài)
由上式可以看出,基質(zhì)吸力的大小與表面張力、接觸角和曲率半徑有關(guān)。其中,基質(zhì)吸力的大小與表面張力成正比,與彎液面曲率半徑成反比。因此,表面張力和曲率半徑的變化均會(huì )導致基質(zhì)吸力的改變。在環(huán)境溫度為25℃時(shí),通過(guò)JC2000型接觸角測量?jì)x對三種試樣的孔隙液體進(jìn)行接觸角測量。得到三種不同表面張力液滴的幾何形態(tài)圖如圖1所示,測量可得純水、酒精溶液和肥皂水對應的接觸角分別為85°、65°和42°,而在25℃環(huán)境下,純水、20%酒精溶液、2 g L-1肥皂水的表面張力系數分別為:7.1×10-2N m-1、4.1×10-2N m-1、2.9×10-2N m-1。表面張力是決定彎液面形狀的主要因素之一,會(huì )影響曲率半徑和接觸角的大小。很顯然,表面張力大的液體接觸角變大,曲率半徑變小。圖1中水滴表面張力大于酒精溶液,但形成的彎液面半徑卻要小于酒精溶液,同樣的,酒精溶液形成的彎液面半徑又小于肥皂水。曲率半徑越小,土體中的基質(zhì)吸力越大??紫端砻鎻埩?huì )對彎液面的曲率半徑產(chǎn)生改變從而對基質(zhì)吸力產(chǎn)生影響,最終影響土壤的收縮開(kāi)裂。
由式2可以得到不同接觸角下基質(zhì)吸力隨表面張力變化的曲線(xiàn)以及不同接觸角下基質(zhì)吸力隨曲率半徑變化的曲線(xiàn)(圖2)。從圖2可知,當表面張力變化時(shí),接觸角為85°、65°和42°的基質(zhì)吸力變化幅度分別為0.009 Pa、0.014 Pa和0.016 Pa,顯然表面張力變化幅度很大,基質(zhì)吸力變化很小。從圖2也可看出,在25℃時(shí),三種不同表面張力液體對應的基質(zhì)吸力大小順序為:純水>酒精溶液>肥皂水。圖2可以明顯看出,當曲率半徑變化時(shí),雖然曲率半徑僅從0.01 m到0.001 m一個(gè)量級的變化,但基質(zhì)吸力變化幅度大約為20 Pa,影響遠較表面張力帶來(lái)的基質(zhì)吸力變化大??傻玫浇Y論:表面張力的變化間接影響基質(zhì)吸力產(chǎn)生改變,首先,表面張力影響了彎液面的曲率半徑,繼而影響基質(zhì)吸力,最終對土壤的收縮開(kāi)裂造成了影響。
事實(shí)上,溫度越高,表面張力越小,但表面張力Ts隨溫度變化幅度很小。就純水而言,溫度從25℃增加至60℃時(shí),表面張力從72 mN m-1變化為65 mN m-1,變化甚微。因此,基質(zhì)吸力大小主要取決于曲率半徑Rs,表面張力越大,曲率半徑越小,基質(zhì)吸力越大。從圖2可知,三種液體曲率半徑Rs大小為:純水>酒精溶液<肥皂水,基質(zhì)吸力(ua-uw)和裂隙度δ的大小順序則相反為:純水>酒精溶液>肥皂水。
圖2基質(zhì)吸力隨表面張力和曲率半徑的變化曲線(xiàn)