合作客戶(hù)/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 生活中的表面張力:鋼針水上漂、解辣和表面張力有什么關(guān)系?
> 便攜式自動(dòng)表面張力儀主要產(chǎn)品特征
> 不同稠油下油相中芳烴含量、水相pH值對油-水界面張力變化規律
> 微凝膠顆粒在氣液界面處吸附動(dòng)力學(xué)及動(dòng)態(tài)方程研究——摘要、介紹、材料及方法
> 新的線(xiàn)索澄清了油和水之間模糊的界限
> 水相PH、鹽濃度對380號燃料油油水界面張力的影響
> 玻璃刀切割玻璃的時(shí)候為什么要沾煤油?
> 磁化水表面張力是多少
> Delta-8 動(dòng)物胃腸道體內中藥物的溶解度的測定——摘要、介紹
> 木材與膠表界面潤濕特性表征與影響因素研究
推薦新聞Info
-
> 受磷脂雙分子層啟發(fā)構建ZIBs兩性L(fǎng)B膜——制備高性能碘正極新思路
> 納米活性顆粒表面潤濕性測量方法及具體操作步驟
> 人工沖洗升級為超聲波清洗,可改善新能源電池沖壓配件的表面張力
> LB法組裝Silicalite-1型分子篩晶粒層,制備出高度b-軸取向的ZSM-5分子篩膜
> 微量天平高靈敏測定雞肉中磺胺類(lèi)藥物含量
> 超低軌衛星環(huán)境效應研究也會(huì )用到超微量天平?
> 基于微納米二氧化硅粒子薄膜制備超疏水滌綸織物
> LB膜技術(shù)制備納米薄膜保護鋰電池極片的方法【發(fā)明方案】
> 毛細現象:表面張力和接觸角兩者有什么關(guān)系?
> 超微量天平應用于高阻燃輻照交聯(lián)低煙無(wú)鹵聚烯烴制備
雙內凹結構表面可實(shí)現對低表面張力液體的穩固超排斥
來(lái)源:哈工大鄭州研究院 哈爾濱工業(yè)大學(xué) 瀏覽 342 次 發(fā)布時(shí)間:2024-02-28
由于較低的表面張力,油滴很容易在固體表面鋪展潤濕,從而降低整個(gè)體系的界面自由能,因此,實(shí)現低表面扎張力的超排斥相對來(lái)說(shuō)比較困難。為了實(shí)現低表面張力油的超排斥,目前有相關(guān)研究人員提出了雙內凹結構,通過(guò)雙內凹結構能夠有效鎖定固-液-氣三相接觸線(xiàn),阻止液體沿著(zhù)表面微結構向下滑移,從而將液體支撐在微結構空氣層上面而實(shí)現對不同液體的有效排斥。
但是,現有技術(shù)中制備得到的雙內凹結構尺寸均在幾十微米以上,雖然能夠實(shí)現低表面張力液體的超排斥,但這種排斥性極不穩定,如空氣流動(dòng)或者液滴自身運動(dòng)都會(huì )導致液體塌陷并濕潤固體表面。
一種制備更小尺寸雙內凹結構的方法,提高對低表面張力液體的超排斥能力,提升穩定性。
為解決上述問(wèn)題,本發(fā)明提供一種微米雙內凹結構表面的制造方法,包括以下步驟:
步驟S1、在半導體材料的表面設置光刻膠層;其中,所述半導體材料包括上下設置的硅層和二氧化硅層,所述光刻膠層設置在所述二氧化硅層遠離所述硅層一側的表面上;
步驟S2、對所述光刻膠層進(jìn)行第一刻蝕,使預設微圖案轉移至光刻膠層上,得到光刻膠掩模板;其中,所述預設微圖案為圓孔陣列結構,所述圓孔陣列結構中相鄰圓孔的間距相同;
步驟S3、根據所述光刻膠掩模板,對所述二氧化硅層進(jìn)行第二刻蝕,在所述二氧化硅層上與所述預設微圖案對應位置形成第一圓柱孔陣列,所述第一圓柱孔陣列中包括多個(gè)周期性陣列的第一圓柱孔,得到第一刻蝕半導體材料;
步驟S4、在所述二氧化硅層中所述預設微圖案的對應區域,沿所述第一圓柱孔的軸向對所述硅層進(jìn)行第三刻蝕,在所述硅層中形成與所述第一圓柱孔對應的第二圓柱孔,然后去除所述光刻膠掩膜板,得到第二刻蝕半導體材料;
步驟S5、在所述第二刻蝕半導體材料中具有所述二氧化硅層的一側沉積二氧化硅,形成沉積二氧化硅層,然后通過(guò)刻蝕去除位于所述第二圓柱孔底部的所述沉積二氧化硅層,得到第三刻蝕半導體材料;
步驟S6、采用深反應離子刻蝕機的Bosch工藝,對所述第二圓柱孔中的所述硅層進(jìn)行各向異性刻蝕,得到第四刻蝕半導體材料;
步驟S7、繼續對所述第二圓柱孔中所述硅層進(jìn)行各向同性刻蝕,在所述半導體材料上形成了微米雙內凹結構表面。
綜上所述,本發(fā)明實(shí)施例能夠在材料表面通過(guò)微加工的方式制備了特征尺寸在10微米以下的雙內凹結構表面,所制備表面具有較大的突破壓和界面穩固因子,可實(shí)現對低表面張力液體的穩固超排斥。