合作客戶(hù)/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 生活中的表面張力:鋼針水上漂、解辣和表面張力有什么關(guān)系?
> 便攜式自動(dòng)表面張力儀主要產(chǎn)品特征
> 不同稠油下油相中芳烴含量、水相pH值對油-水界面張力變化規律
> 微凝膠顆粒在氣液界面處吸附動(dòng)力學(xué)及動(dòng)態(tài)方程研究——摘要、介紹、材料及方法
> 新的線(xiàn)索澄清了油和水之間模糊的界限
> 水相PH、鹽濃度對380號燃料油油水界面張力的影響
> 玻璃刀切割玻璃的時(shí)候為什么要沾煤油?
> 磁化水表面張力是多少
> Delta-8 動(dòng)物胃腸道體內中藥物的溶解度的測定——摘要、介紹
> 木材與膠表界面潤濕特性表征與影響因素研究
推薦新聞Info
-
> 受磷脂雙分子層啟發(fā)構建ZIBs兩性L(fǎng)B膜——制備高性能碘正極新思路
> 納米活性顆粒表面潤濕性測量方法及具體操作步驟
> 人工沖洗升級為超聲波清洗,可改善新能源電池沖壓配件的表面張力
> LB法組裝Silicalite-1型分子篩晶粒層,制備出高度b-軸取向的ZSM-5分子篩膜
> 微量天平高靈敏測定雞肉中磺胺類(lèi)藥物含量
> 超低軌衛星環(huán)境效應研究也會(huì )用到超微量天平?
> 基于微納米二氧化硅粒子薄膜制備超疏水滌綸織物
> LB膜技術(shù)制備納米薄膜保護鋰電池極片的方法【發(fā)明方案】
> 毛細現象:表面張力和接觸角兩者有什么關(guān)系?
> 超微量天平應用于高阻燃輻照交聯(lián)低煙無(wú)鹵聚烯烴制備
液態(tài)Ag-O系表面張力和表面過(guò)剩量計算、氧氣壓力和溫度的預測模型——摘要、簡(jiǎn)介
來(lái)源:過(guò)程工程學(xué)報李天骕 劉劍雄 單顯祥 李堪鵬 瀏覽 170 次 發(fā)布時(shí)間:2024-05-28
摘要:本工作利用表面能與內聚能的比例關(guān)系,計算了液態(tài)Ag的表面張力和表面過(guò)剩熵。結果顯示,隨著(zhù)溫度的升高,表面張力近似線(xiàn)性下降,表面過(guò)剩熵也逐漸減小,這表明液態(tài)Ag表面總是保持有序結構。在此基礎上,證明了Ag-O系具有理想溶體性質(zhì),并簡(jiǎn)化了Butler方程,修正了液態(tài)Ag-O系表面張力關(guān)于氧氣壓力和溫度的預測模型。結果表明,當氧氣壓力低于10 kPa時(shí),液態(tài)Ag-O系的表面張力與溫度呈負相關(guān);而當氧氣壓力高于10 kPa時(shí),隨著(zhù)溫度的升高,表面張力呈現先增大后減小的趨勢。此外,還探究了O原子的表面偏析行為。研究發(fā)現,表面偏析因子與溫度和氧氣壓力均呈負相關(guān),在較低的溫度和氧氣壓力下,O原子傾向富集于表面。
1、前言
表面張力是液態(tài)金屬的重要物理參數之一,其在控制各種界面現象中發(fā)揮著(zhù)關(guān)鍵作用。因此,獲取準確的表面張力至關(guān)重要。目前,常用的表面張力測量方法包括滴外形法[1]、最大泡壓法[2]、毛細血管上升法[3]和電磁懸浮法[4]等。然而,實(shí)驗結果之間通常存在較大差異[5]。一方面是實(shí)驗方法本身存在誤差,另一方面則是實(shí)驗結果受到雜質(zhì)的影響。實(shí)際上,表面雜質(zhì)存在會(huì )顯著(zhù)降低表面張力。對于液態(tài)Ag,其與氧之間有很強的親和力,在氧氣壓力為100 kPa的條件下,液態(tài)Ag能夠溶入自身體積約21倍的氧[6]。由于實(shí)驗過(guò)程幾乎無(wú)法避免氧的存在,并且在高溫下測量表面張力也十分困難。因此,表面張力的理論研究受到廣泛關(guān)注。
Gibbs吸附方程[7]最早用于描述溶液的表面張力和表面過(guò)剩量。Langmuir方程[8]基于單層吸附假設,揭示了溶質(zhì)濃度和表面覆蓋度之間的平衡關(guān)系。Belton方程[9]在前兩者的基礎上闡明了溶液表面張力隨溶質(zhì)濃度的變化關(guān)系。Szyszkowski經(jīng)驗方程[10]則在擬合表面張力測量結果方面得到廣泛應用。然而,這些模型中均存在待確定參數,且依賴(lài)大量實(shí)驗數據,因此預測能力較差。當前,已經(jīng)發(fā)展出諸多理論模型和方法,包括Skapski模型[11]、Eyring理論[12]、梯度理論[13]、Gheribi半經(jīng)驗模型[14]以及蒙特卡羅法[15]和分子動(dòng)力學(xué)法[16]等。但是,這些方法也存在一定的局限性。蒙特卡羅法和分子動(dòng)力學(xué)法在進(jìn)行計算機模擬時(shí)存在較高的波動(dòng)性和統計不確定性,Gheribi半經(jīng)驗模型和梯度理論均需要大量的實(shí)驗數據支持,而Skapski模型和Eyring理論則不適用于金屬-氣體系統研究。在以往的探索中,Butler方程[17]通常用于計算僅含金屬的二元合金表面張力,自Kaptay[18]改進(jìn)了Butler方程后,改進(jìn)的Butler方程便可用于預測金屬-氣系統的表面張力[19]。
在本工作中,通過(guò)表面能與內聚能的比例關(guān)系計算了液態(tài)Ag的表面張力和表面過(guò)剩熵?;诖?,通過(guò)合理假設,將液態(tài)Ag-O系視為理想溶液,從而簡(jiǎn)化Butler方程,獲得了液態(tài)Ag-O系的表面張力關(guān)于氧氣壓力和溫度的預測模型。此外,還探究了O原子的表面偏析行為。該研究為深入探索液態(tài)Ag-O系的表面性質(zhì)提供數據支持,并為金屬-氣系統表面張力預測模型的優(yōu)化提供參考。
液態(tài)Ag-O系表面張力和表面過(guò)剩量計算、氧氣壓力和溫度的預測模型——摘要 、簡(jiǎn)介