合作客戶(hù)/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 吡蟲(chóng)啉藥液、 阿維菌素、苦參堿表面張力與接觸角的關(guān)系
> 不同種類(lèi)與濃度的無(wú)機鹽氯化物對麥胚脂肪酶油-水界面特性的影響(一)
> 新設計的拼接式固相萃取柱完美解決萃取柱出現空氣栓塞問(wèn)題
> 克拉瑪依油田:陰陽(yáng)離子表面活性劑復配體系可實(shí)現超低界面張力
> 從哪些方面可以體現出酶特異性地結合某種物質(zhì)?
> 超低軌衛星環(huán)境效應研究也會(huì )用到超微量天平?
> 表面張力的定義
> 界面張力作用下開(kāi)發(fā)MAPbBr3鈣鈦礦單晶制備方法
> 基于表面張力理論分析激光熱應力彎折區形貌的影響因素及形成原因
> 新煙堿類(lèi)殺蟲(chóng)劑發(fā)展概述
推薦新聞Info
-
> 石油磺酸鹽中有效組分的結構與界面張力的關(guān)系
> 乙醇胺與勝坨油田坨28區塊原油5類(lèi)活性組分模擬油的動(dòng)態(tài)界面張力(二)
> 乙醇胺與勝坨油田坨28區塊原油5類(lèi)活性組分模擬油的動(dòng)態(tài)界面張力(一)
> ?全自動(dòng)表面張力儀無(wú)法啟動(dòng)、讀數不穩定等常見(jiàn)故障及解決方法
> 混合型烷醇酰胺復雜組成對油/水界面張力的影響規律(二)
> 混合型烷醇酰胺復雜組成對油/水界面張力的影響規律(一)
> 懸滴法測量液體表面張力系數的測量裝置結構組成
> 多晶硅蝕刻液的制備方法及表面張力測試結果
> 高溫多元合金表面張力的計算方法及裝置、設備
> 納米生物質(zhì)體系性能評價(jià)及驅油特性實(shí)驗研究
St與MMA在無(wú)皂乳液聚合過(guò)程中的動(dòng)態(tài)表面張力變化——結果與討論、結論
來(lái)源: 《化工學(xué)報》 瀏覽 127 次 發(fā)布時(shí)間:2024-11-01
2、結果與討論
2.1無(wú)皂乳液聚合體系組分的動(dòng)態(tài)表面張力未反應前,聚合體系可以分為油相和水相兩部分:油相部分主要為單體,水相部分主要為引發(fā)劑(過(guò)硫酸鉀)、pH緩沖劑(NaHCO。)、PEG和水。這兩部分的DST曲線(xiàn)如圖1所示。
圖1聚合體系各組分動(dòng)態(tài)表面張力曲線(xiàn)
從圖中可以看出,油相中混合單體的氣液界面張力最低(約25mN·m左右),水的表面張力最高(約74mN·m左右),而受引發(fā)劑、緩沖劑和PEG的影響,水相混合溶液的氣液界面張力居中(約62mN·m左右)。在未反應之前,水油兩相的DST曲線(xiàn)變化趨勢很小,都能以較快的速度達到平衡穩定狀態(tài)。
2.2聚合時(shí)間對動(dòng)態(tài)表面張力變化趨勢的影響經(jīng)引發(fā),水相中溶解的單體聚合成鏈,聚合體系的組分也隨之發(fā)生變化。體系在水相中含有了自由基齊聚物,以及由齊聚物聚集形成的基本粒子或膠束。這些新產(chǎn)生的物質(zhì)對DST曲線(xiàn)有很明顯的影響,加上PEG與聚合物鏈的相互作用,則使DST曲線(xiàn)有更多的變化。為了能明確地分析PEG在聚合過(guò)程中的作用,進(jìn)行了有PEG和無(wú)PEG參與的聚合體系各時(shí)間段動(dòng)態(tài)表面張力實(shí)驗比較。圖2和圖3分別為St/MMA在無(wú)PEG的水中和有PEG的水溶液中DST隨聚合時(shí)間的變化趨勢。
由圖2可見(jiàn),無(wú)PEG參與的聚合體系中,隨聚合進(jìn)行,體系所表現的氣液界面張力趨勢為逐漸增大,從5min的28mN·m~左右到6Omin的60~65ITIN·m~,75min則稍有回落,在55~61mN·m。各時(shí)間段的DST趨勢較為平穩。這種氣液界面張力隨聚合進(jìn)行逐漸上升的趨勢較為符合無(wú)皂乳液聚合反應機理。在反應初期水相中不僅有溶解在水中的單體,還有引發(fā)形成的齊聚物,這種齊聚物一端帶有疏水鏈段,另一端帶有親水性的一SO引發(fā)劑碎片,具有表面活性。當齊聚物達到膠束濃度時(shí)會(huì )聚并成基本粒子,由幾十個(gè)到上百個(gè)齊聚物組成。溶解在水相中的單體分子量相對齊聚物小很多,體積小,擴散速率快,極易遷移至氣液界面。對于一開(kāi)始的反應,體系中仍有大量單體存在,水相中的單體濃度基本保持在飽和狀態(tài),因此大部分氣液界面首先由單體等物質(zhì)占據,還有極少部分的界面由具有表面活性的齊聚物覆蓋,如圖4所示。所以與圖1對比會(huì )發(fā)現,5min時(shí)的氣液界面張力非常接近單體本身的氣液界面張力。隨聚合進(jìn)行,水相中的單體逐漸耗光,氣液界面張力開(kāi)始逐漸上升,此時(shí)到達氣液界面的則主要是齊聚物和膠粒,相對單體的遷移速率要慢很多,因此10min以后的DST衰減斜率要大于5rain時(shí)的。
圖2無(wú)PEG參與體系的聚合過(guò)程中不同時(shí)段動(dòng)態(tài)表面張力曲線(xiàn)
圖3有PEG參與體系的聚合過(guò)程中不同時(shí)段動(dòng)態(tài)表面張力曲線(xiàn)
圖4無(wú)PEG參與聚合體系的氣液界面吸附
由圖3可見(jiàn),有PEG參與的聚合體系。5rain的DST與圖2相比變化起伏較大,有先低后急升再緩降的變化模式,與一般的DST呈單調減小的趨勢有很大不同。這是因為在反應剛開(kāi)始體系中除了單體、齊聚物和膠粒,又增加了PEG,而且PEG與齊聚物、膠粒作用形成粒子堆口]。PEG是完全水溶性物質(zhì),在體系水相中的濃度遠遠大于單體和齊聚物,但擴散速率要小于單體及齊聚物,因此一開(kāi)始部分新形成的氣液界面會(huì )由擴散速率最快的單體迅速占領(lǐng),而隨時(shí)間推移PEG借助濃度優(yōu)勢會(huì )替代單體占據氣液界面,如圖5所示,最終達到平衡,由單體、齊聚物和PEG共同覆蓋整個(gè)氣液界面。PEG水溶液的氣液界面張力要比單體的氣液界面張力大得多,因此在水相中有大量單體存在的情況下,此聚合體系的DST會(huì )出現先低后急升的曲線(xiàn)形狀。這個(gè)狀況會(huì )一直持續到30rain時(shí),可以看出,PEG使體系直到30min時(shí)仍有大量游離單體存在于水相,而無(wú)PEG參與的體系此時(shí)已無(wú)單體游離在水相中。這一點(diǎn)可以從圖6轉化率一時(shí)間曲線(xiàn)得到證實(shí),無(wú)PEG參與的體系30min時(shí)已接近聚合終點(diǎn),而有PEG參與的體系轉化率才只有25左右。待反應至50min時(shí),DST趨勢平穩,水相中游離的單體已經(jīng)很少,此時(shí)轉化率在49左右,說(shuō)明單體已基本進(jìn)入到膠粒中。這個(gè)狀態(tài)一直維持到60min時(shí)。75min時(shí)的體系有很大變化,從宏觀(guān)看粒徑發(fā)生轉變,由大變小。從DST曲線(xiàn)看氣液界面張力明顯提高,轉化率已快速增加到95,接近終點(diǎn)。此時(shí)體系中對DST的貢獻主要以脫離粒子堆的成熟粒子l3和PEG為主。
圖5有PEG參與聚合體系的氣液界面吸附
2.3 St/M MA無(wú)皂乳液聚合物的表面活性
圖2和圖3的DST針對混合體系,只能說(shuō)明PEG如何影響聚合反應。但對最終聚合物的特性是否發(fā)生變化還無(wú)法判斷。為了進(jìn)一步說(shuō)明PEG如何影響聚合物特性,將PEG、有PEG參與聚合的10min和75min共聚物以及無(wú)PEG參與聚合體系的共聚物按1.4節中的制備聚合物乳液樣品的方法制備聚合物乳液,然后測試DST,得到圖7。
由圖7可見(jiàn),有PEG參與的聚合體系制備的聚合物乳液表面張力較低(約5O~51mN·m左右),明顯低于四氫呋喃/水、PEG/四氫呋喃/水、無(wú)PEG參與的聚合體系制備的聚合物乳液表面張力(約54~55.5mN·rfl左右)。因為氣液界面張力受擴散物質(zhì)本身表面活性強弱的影響,所以從四氫體系制備的聚合物乳液DST相近可以得出結論,即T≤PE。、F≤EG聚合物,而有PEG參與的聚合物乳液的界面張力說(shuō)明c聚合物<n,說(shuō)明有PEG參與的聚合體系制備的聚合物表面活性更強,而且這種較強表面活性的聚合物在反應的開(kāi)始就已經(jīng)形成。
圖6有或無(wú)PEG聚合體系時(shí)間一轉化率曲線(xiàn)
圖7各類(lèi)聚合物乳液以及THF、PEG水溶液的動(dòng)態(tài)表面張力曲線(xiàn)
由于開(kāi)始轉化率較低,強表面活性的聚合物生成量較少,形成的聚合物團聚成較大的粒子堆,這時(shí)粒徑表現是由小變大。隨轉化率的不斷增加,強表面活性聚合物的量大幅增加,這種較強表面活性的聚合物更易形成粒徑小的穩定膠粒,不斷進(jìn)人粒子堆中的粒子形成粒徑小且密實(shí)的粒子,使粒子的表面電荷增加,并最終脫離粒子堆形成穩定粒子,這時(shí)粒徑表現是由大變小。PEG參與的體系聚合物所具有的強表面活性正是聚合物不斷進(jìn)入粒子的動(dòng)力,證實(shí)了所觀(guān)察到的體系粒徑由小變大、再由大變小的現象。
3、結論
由于PEG的存在,使St/MMA在水相中經(jīng)歷了不一樣的聚合過(guò)程,PEG會(huì )使體系的反應速率變慢,當反應到50min時(shí)轉化率只有49,而無(wú)PEG參與的體系在30min時(shí)聚合已接近終點(diǎn),轉化率達到98以上。St/MMA和引發(fā)劑形成的聚合物在PEG的作用下,形成了一種具有更強表面活性的聚合物,其表面活性水平高于PEG以及無(wú)PEG參與的聚合體系的聚合物,但弱于混合單體及齊聚物。這種較強表面活性的聚合物在轉化率只有5的時(shí)候就已經(jīng)存在,是聚合物進(jìn)入粒子堆形成小粒子且穩定粒子的動(dòng)力,并最終使粒子帶有足夠脫離粒子堆的表面電荷。