合作客戶(hù)/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 配制淡紅色噴印墨水時(shí),如何測量其表面張力
> 湍流飛濺與表面張力兩者之間有何關(guān)系?
> 基于涂料樹(shù)脂表面張力分析漆膜縮孔產(chǎn)生原因
> 超微量天平應用案例:鉛試金富集稱(chēng)量法測定含銅物料中金和銀含量
> 混合型生物洗油菌發(fā)酵上清液的表面張力值測定(二)
> 我國陶瓷墨水生產(chǎn)企業(yè)基本狀況以及國產(chǎn)墨水與進(jìn)口墨水性能的比較
> 篩選常用、經(jīng)濟且可抑制低階煤煤塵的表面活性劑(二)
> C72-MPB氟醚磷酸膽堿表面活性劑表面張力、泡沫/潤濕性能測定(三)
> 氟硅表面活性劑(FSS)水溶液表面張力、發(fā)泡力、乳化力測定(一)
> 不同種類(lèi)與濃度的無(wú)機鹽氯化物對麥胚脂肪酶油-水界面特性的影響(二)
推薦新聞Info
-
> Langmuir槽法研究不同電性Gemini表面活性劑對界面吸附膜性質(zhì)的影響(三)
> Langmuir槽法研究不同電性Gemini表面活性劑對界面吸附膜性質(zhì)的影響(二)
> Langmuir槽法研究不同電性Gemini表面活性劑對界面吸附膜性質(zhì)的影響(一)
> 生物表面活性劑產(chǎn)生菌的篩選及對PAHs污染環(huán)境的修復效果研究(四)
> 生物表面活性劑產(chǎn)生菌的篩選及對PAHs污染環(huán)境的修復效果研究(三)
> 生物表面活性劑產(chǎn)生菌的篩選及對PAHs污染環(huán)境的修復效果研究(二)
> 生物表面活性劑產(chǎn)生菌的篩選及對PAHs污染環(huán)境的修復效果研究(一)
> 表面活性劑生物降解度測定方法種類(lèi)及表面張力法的優(yōu)勢——結果與分析、結論
> 表面活性劑生物降解度測定方法種類(lèi)及表面張力法的優(yōu)勢——摘要、實(shí)驗部分
> 炔屬二醇表面活性劑對環(huán)氧灌漿材料漿液性能、灌體的滲透性影響(二)
研究發(fā)現:水解聚丙烯酰胺HPAM降低油水界面張力能力極其有限(一)
來(lái)源: 《中國石油大學(xué)學(xué)報(自然科學(xué)版)》 瀏覽 905 次 發(fā)布時(shí)間:2024-09-03
摘要:采用分子動(dòng)力學(xué)模擬方法,從原子分子層次考察部分水解聚丙烯酰胺(HPAM)以及改性HPAM的界面活性。結果表明:HPAM降低油水界面張力能力極其有限,而引入疏水基團后的HPAM具有較好的降低界面張力效果;改性HPAM的疏水基團增強與油相的作用,并在界面處形成致密的聚合物膜,增加油水界面層厚度,隔離油水相接觸,從而降低油水接觸形成的界面張力;鹽離子的存在增加油水界面張力,改性HPAM引入的磺酸基團具有較好的抗鹽能力,可以降低界面處鹽離子的聚集,從而減弱鹽離子對界面張力的影響。
早期的聚合物驅主要采用部分水解聚丙烯酰胺(HPAM),具有界面活性低、耐溫/耐鹽性差等缺點(diǎn)。通過(guò)對HPAM進(jìn)行改性,不僅能改善驅替液的流變性能,還能提高HPAM的界面活性,促進(jìn)HPAM在油水界面的吸附,以降低油水界面張力,起到乳化原油的作用。目前主要通過(guò)試驗手段考察原油乳化行為,使用傅里葉紅外光譜、核磁共振等儀器可表征聚合物或表面活性劑的構象;利用電鏡可觀(guān)察乳狀液的形貌和尺寸;通過(guò)界面張力測量可評價(jià)聚合物、表面活性劑等的界面活性。分子動(dòng)力學(xué)(MD)模擬是基于統計物理原理,將原子、分子的運動(dòng)與體系宏觀(guān)性質(zhì)建立關(guān)系的一種計算模擬方法。Du等對3種聚合物驅油劑進(jìn)行MD模擬,比較不同溶液的黏度,揭示鹽離子誘導聚合物聚集的機制。Abdel-Azeim等利用MD模擬研究HPAM聚合物和磺化HPAM的締合行為,發(fā)現磺化基團與陽(yáng)離子的相互作用較弱,鹽離子的存在會(huì )促進(jìn)聚合物的締合。Kshitij等使用MD模擬計算熔融聚甲基丙烯酸甲酯的表面張力,其隨溫度變化的結果與試驗測試結果相符。界面處的張力主要來(lái)源于界面處原子受到垂直于界面的應力不均衡,從而引起界面處產(chǎn)生平行于界面的張力。筆者對親水性的HPAM進(jìn)行改性,通過(guò)接枝疏水基團增強聚合物與油相的相互作用,減弱油水界面處分子受力的不均衡,通過(guò)降低油水界面張力從而獲得高的界面活性。進(jìn)一步通過(guò)接枝具有耐鹽性的磺酸基團,以提升聚合物在高礦化度儲層中的性能。
1、模型及模擬方法
1.1、模型構建
為研究聚合物對油水界面張力的影響,模擬體系由油相、水相、聚合物分子3部分組成,模型見(jiàn)圖1(a)。其中油相由正十二烷分子來(lái)模擬,聚合物選擇HPAM以及改性后的聚丙烯酰胺進(jìn)行對比研究。
模擬中采用聚合物的聚合度為100,在每個(gè)界面處放置10條聚合物鏈。丙烯酰胺單體經(jīng)水解變?yōu)楸┧?,模型中設置HPAM水解度為20%,水解單體在HPAM中均勻分布。HPAM改性中使用的2種單體見(jiàn)圖1(b)。聚合物的改性是在原有分子基礎上,兩側各替換5個(gè)疏水單體,并將分子上10%(質(zhì)量分數)的丙烯酰胺單體替換為2-丙烯酰胺-2-甲基丙磺酸(AMPS)單體,AMPS單體在聚合物鏈中均勻分布。
實(shí)際應用中,聚合物驅油劑相對分子質(zhì)量非常大。由于模擬尺度的限制,MD模型中聚合物鏈相對分子質(zhì)量較小。由于聚合物是由大量重復單元構成的,較小的模型可以體現不同單體的結構及分布特征,因此本研究所采用的模型可以反映宏觀(guān)聚合物驅過(guò)程中的物理本質(zhì)。
1.2、分子力場(chǎng)與模擬軟件
聚合物分子的電荷采用約束靜電勢(RESP)電荷用于評價(jià)聚合物分子所受的靜電相互作用。聚合物單體結構優(yōu)化采用Gaussian09程序,基組選用B3LYP/6-31G**,RESP電荷由Multiwfn軟件擬合得到。選用CHARMM36力場(chǎng)描述體系中非鍵相互作用以及成鍵相互作用。所有MD模擬通過(guò)GROMACS 2019.6程序包實(shí)現,構型的可視化通過(guò)VMD軟件實(shí)現。
1.3、模擬參數設置
模擬體系尺寸為80×80×250,在xyz三個(gè)方向均采用周期性邊界條件。每個(gè)模型首先采用最速下降法優(yōu)化初始構型,對體系能量最小化,然后進(jìn)行100 ns的MD模擬。在所有的模擬中,壓力設定為10 MPa,用于模擬地層壓力,溫度設定為343 K。模擬中采用NPT系綜,通過(guò)Parrinello-Rahman方法進(jìn)行壓力耦合,Nosé-Hoover方法進(jìn)行溫度耦合,使用粒子網(wǎng)格Ewald(PME)方法處理靜電相互作用,范德華相互作用和靜電相互作用的截斷半徑設置為12,模擬步長(cháng)設定為1 fs。